首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability.  相似文献   

2.
Groundwater contamination by agricultural chemicals is a major environmental pollution issue nation-wide. The regulatory agencies of towns and counties face the problem of finding a methodology for assessing the ground-water contamination potential of a large number of agricultural pesticides. Because of the spatial nature of the problem and the limited data availability for comprehensive pesticide movement models, a contamination potential index was employed for preliminary assessment. A specially designed geographic information system was used to create ground-water contamination likelihood maps for a 1500 km2 area. The results suggest that this methodology can be used successfully for evaluating the relative contamination potential of a large number of pesticides over large areas with limited input data. A tentative approach for using this method for monitoring and registration of pesticides is also discussed.  相似文献   

3.
ABSTRACT: The Attenuation Factor (AF), a screening model, was used to evaluate the relative degree of vulnerability of groundwater to pesticide contamination in Louisa County, Virginia. For evaluating the contamination potential of pesticides, three scenarios of pesticide leaching represented by high, moderate, and low cases of degradation and sorption in the soil were considered. Data layers were overlaid within a Geographic Information System (GIS) for spatial computation of AF for the actual and 2m groundwater depths. This spatial database was divided into five contamination potential categories namely high, medium, low, very low, and unlikely, based on the numerical values of the AF for each cell (119 ha). The results for the three most mobile pesticides are presented in this paper. The performance of the AF model was evaluated by comparing its predicted results with the field data from an experimental watershed. The AF model was able to identify most of the frequently detected pesticides in the watershed. A sensitivity analysis was also performed. The results of this study provide information about the potential groundwater threat by pesticides to the citizens ahd decision-makers in the County and can be used for formulating an appropriate land use management plan to protect the groundwater quality.  相似文献   

4.
Improper agricultural activities seriously affect water quality. It is very important to control agricultural nonpoint source pollution along the Chi-Jia-Wang Stream to protect the habitat of land-locked salmon (Oncorhynchus masou formosanus), one of the endangered species in Taiwan. Riparian vegetative buffer strips are used to intercept wastewater, surface runoff and groundwater flow to reduce pesticide, nutrient and other organic pollutants before they enter the stream. This study estimates the suitable width for vegetated buffer strips in the riparian zone along the stream using a geographic information system and an index model. The groundwater in the study area is easily contaminated by pollutants due to the high hydraulic conductivity in the riparian zone of the Chi-Jia-Wang Stream. After comparing simulations on selected 46 kinds of selected pesticides, the maximum safety depth of Fenarimol was estimated. A wider Fenarimol vegetated strip is needed as a buffer zone to ensure pollution control effectiveness. Simulation results can provide a preliminary evaluation for the soil or groundwater pollution caused by pesticides, but the actual influences require onsite data verification.  相似文献   

5.
During recent decades, a change in land use in the mountainous regions of Northern Thailand has been accompanied by an increased input of agrochemicals. We identified lateral water flow and pesticide transport pathways and mechanisms in a Hapludult on a sloped litchi orchard in Northern Thailand. During two rainy seasons, two micro-trench experiments were performed at the plot scale (2 by 3 m). The first experiment was performed at the footslope of the orchard; the second was performed at a midslope position. Two salt tracers (bromide and chloride) and two pesticides {methomyl [S-methyl-N-(methylcarbamoyloxy)thioacetimidate] and chlorothalonil (2,4,5,6-Tetrachlor-1,3-benzdicarbonitril)} were applied in stripes parallel to the slope 150 and 300 cm away from the trench. At the trench, soil water was collected by wick samplers. Tensiometers and time-domain reflectometry probes were installed. At the end of the experiment, soil samples were taken and analyzed for residual concentrations of tracers and pesticides. Lateral subsurface flow of water occurred exclusively along preferential flow paths and was mainly observed at 0- to 30- and 60- to 90-cm depth. Lateral transport of pesticides was negligible, but both pesticides were found beneath the application area at 90 cm depth. Therefore, they may pose a groundwater contamination risk. The amount of wick flow and the location of interflow were mainly a function of rain amount and antecedent soil water suction. During dry periods, water flow was restricted to the topsoil. After heavy rain events and wet periods, interflow was mainly observed in the subsoil. The cumulative rain amount between samplings necessary to induce interflow was 20 mm. At the footslope, the interflow was seven times higher, and the network of water-bearing pores increased compared with the midslope position.  相似文献   

6.
Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone.  相似文献   

7.
A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.  相似文献   

8.
The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. To control and manage groundwater quality, the characterization of groundwater contamination and identification of the factors affecting the nitrate concentration of groundwater are significant. The characterization of groundwater contamination at a hydrologically complex agricultural site in Yupori, Chuncheon (Korea) was undertaken by analyzing the hydrochemical data of groundwater within a statistical framework. Multivariate statistical tools such as cluster analyses and Tobit regression were applied to investigate the spatial variation of nitrate contamination and to analyze the factors affecting the NO3-N concentration in a shallow groundwater system. The groundwater groups from the cluster analysis were consistent with the land use pattern of the study area. The clustered group of a gentle-slope area with lower elevations showed higher NO3-N contamination of groundwater than groups on a hillside with higher elevations. Tobit regression results indicated that the agricultural activity in the vegetable fields and barns were the major factors affecting the elevated NO3-N concentration while the land slopes and elevations were negatively correlated with the NO3-N concentration. This shows that topographic characteristics such as land slopes and elevations should be considered to evaluate the land use impact on shallow groundwater quality.  相似文献   

9.
The paper presents a geographic information system (GIS) model-based approach for analysis of potential contamination of soil and water by pyrethroids for the European continent. Pyrethroids are widely used pesticides and their chemical and toxicological characteristics suggest there may be concerns about human health and ecosystems, although so far there is no strong evidence indicating actual risk. However, little monitoring has been conducted and limited experimental information is available. We perform an assessment exercise that demonstrates how accessible information and GIS-based modeling allow to estimate the spatial distribution of chemical concentrations and fluxes at a screening level. The assessment highlights potential hot spots and the main environmental transport pathways, in a quick and simple way. By combining information on pesticide use, crop distribution and landscape and climate parameters we identify potential problem areas to help focusing monitoring campaigns. The approach presented here is simple and fast, and can be applied to virtually all pesticide classes used over a large domain, and is therefore suitable for the screening of large quantities of chemicals, of which the majority has not undergone any systematic environmental monitoring program. The method has been tested through benchmarking with other well-established models. However, further research is needed to evaluate it against experimental observations.  相似文献   

10.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   

11.
An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matrix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation.  相似文献   

12.
Pesticide dependence is a major threat to food safety and local environment. Although numerous studies have explored different causes of pesticide dependence, few have examined how pesticides are locked into agricultural modernisation and rural transformation. Based on a case study of a Chinese village, this paper demonstrates how agricultural modernisation trajectory and rural changes have perpetuated the use of pesticides as necessities in agriculture as well as for farmers' livelihoods. Modern technologies, such as hybrid rice, conservation tillage, changes in crop structure, and reduction of intercropping all contribute highly towards pesticide dependence. The household responsibility system in China has provided the institutional foundation for increased pesticide use. Rural transformations driven by livelihoods diversification have created conducive social spaces for pesticide application. To step out of pesticide dependence, promotion of genetic diversity in agriculture, a reassessment of locational suitability of conservation tillage, institutional strengthening and the promotion of integrated pest management methods are suggested.  相似文献   

13.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   

14.
ABSTRACT: Agriculture is the leading cause of regional‐scale non‐point source (NPS) pollution in the world today. Indices of pesticide leaching in the vadose zone are well suited for estimating the spatial accumulation and distribution of NPS pollutants in the near surface. In this study the Attenuation Factor (AF) and the Leaching index (Li) are used to assess the near‐surface leaching potential for 32 important agrochemicals for world average agricultural soil properties and recharge rates. The AF and Li indices both require the same input data and appear to work well for nonpolar chemicals. In the effort reported here the AF and Li indices produced similar results for the 32 agrochemicals. Pesticides with high and moderate leaching potential are identified. The AF estimates were more constant than the Li estimates for changes in the compliance depth and recharge rate. The AF index is simpler to use than the Li index and, therefore, is more likely to be employed in the future for screening/ranking agrochemicals relative to regional‐scale NPS ground water vulnerability.  相似文献   

15.
Application of game theory for a groundwater conflict in Mexico   总被引:2,自引:0,他引:2  
Exploitation of scarce water resources, particularly in areas of high demand, inevitably produces conflict among disparate stakeholders, each of whom may have their own set of priorities. In order to arrive at a socially acceptable compromise, the decision-makers should seek an optimal trade-off between conflicting objectives that reflect the priorities of the various stakeholders. In this study, game theory was applied to a multiobjective conflict problem for the Alto Rio Lerma Irrigation District, located in the state of Guanajuato in Mexico, where economic benefits from agricultural production should be balanced with associated negative environmental impacts. The short period of rainfall in this area, combined with high groundwater withdrawals from irrigation wells, has produced severe aquifer overdraft. In addition, current agricultural practices of applying high loads of fertilizers and pesticides have contaminated regions of the aquifer. The net economic benefit to this agricultural region in the short-term lies with increasing crop yields, which requires large pumping extractions for irrigation as well as high chemical loading. In the longer term, this can produce economic loss due to higher pumping costs (i.e., higher lift requirements), or even loss of the aquifer as a viable source of water. Negative environmental impacts include continued diminishment of groundwater quality, and declining groundwater levels in the basin, which can damage surface water systems that support environmental habitats. The two primary stakeholders or players, the farmers in the irrigation district and the community at large, must find an optimal balance between positive economic benefits and negative environmental impacts. In this paper, game theory was applied to find the optimal solution between the two conflicting objectives among 12 alternative groundwater extraction scenarios. Different attributes were used to quantify the benefits and costs of the two objectives, and, following generation of the Pareto frontier or trade-off curve, four conflict resolution methods were then applied.  相似文献   

16.
Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro--(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities among areas for future groundwater monitoring.  相似文献   

17.
One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.  相似文献   

18.
Environmental assessments of golf courses and other turf systems must often rely on mathematical modeling. However, in the case of pesticide runoff, successful modeling applications are rare. Available models were developed for agricultural applications and have seen very limited testing for turf. TurfPQ is a pesticide runoff model developed exclusively for turf. The model is based on a curve number calculation for runoff volume and linear partitioning of pesticide into adsorbed and dissolved components during a precipitation or irrigation event. Calibration is optional, so the model can be applied, using default parameter values, to situations where runoff and chemical loss data are unavailable. TurfPQ was tested with default parameter values for 52 pesticide runoff events involving six pesticides measured in plot studies in four states. The model typically produced conservative overpredictions of pesticide runoff, particularly with strongly adsorbed pesticides. Mean predicted pesticide runoff was 2.9% [corrected] of application, compared with an observed mean of 2.1%. TurfPQ captured the dynamics of the pesticide runoff events well with R2 = 0.65 [corrected]. Sensitivity analyses indicated that prediction errors could be reduced by better estimates of adsorption parameters and runoff curve numbers. However, even with default parameters, TurfPQ predictions are at least as accurate as those produced by more complex models.  相似文献   

19.
Widespread contamination of California water bodies by the organophosphate insecticides diazinon and chlorpyrifos is well documented. While their usage has decreased over the last few years, a concomitant increase in pyrethroid usage (e.g., permethrin) (replacement insecticides) has occurred. Vegetated agricultural drainage ditches (VADD) have been proposed as a potential economical and environmentally efficient management practice to mitigate the effects of pesticides in irrigation and storm runoff. Three ditches were constructed in Yolo County, California for a field trial. A U-shaped vegetated ditch, a V-shaped vegetated ditch, and a V-shaped unvegetated ditch were each amended for 8 h with a mixture of diazinon, permethrin, and suspended sediment simulating an irrigation runoff event. Water, sediment, and plant samples were collected spatially and temporally and analyzed for diazinon and permethrin concentrations. Pesticide half-lives were similar between ditches and pesticides, ranging from 2.4 to 6.4 h. Differences in half-distances (distance required to reduce initial pesticide concentration by 50%) among pesticides and ditches were present, indicating importance of vegetation in mitigation. Cis-permethrin half-distances in V ditches ranged from 22 m (V-vegetated) to 50 m (V-unvegetated). Half-distances for trans-permethrin were similar, ranging from 21 m (V-vegetated) to 55 m (V-unvegetated). Diazinon half-distances demonstrated the greatest differences (55 m for V-vegetated and 158 m for V-unvegetated). Such economical and environmentally successful management practices will offer farmers, ranchers, and landowners a viable alternative to more conventional (and sometimes expensive) practices.  相似文献   

20.
农药地下水暴露模型China-PEARL已开始在我国农药地下水风险评估中应用。本文利用China-PEARL潍坊市场景数据,为PRZM-GW构建了潍坊市场景。在潍坊市场景下,利用2个模型计算了56种农药在5种作物上共计145种施用方式下的预测环境浓度(PEC)值,利用商值法(RQ)进行风险评估。结果显示有8种农药共13种施用方式在潍坊市场景下存在不可接受的地下水风险。其中,2个模型均显示有不可接受风险的农药是多菌灵和氟磺胺草醚。2个模型PEC值比较结果显示,PRZM-GW的农药风险评估趋势与China-PEARL一致性高,从而验证了China-PEARL的可信性。模型PEC值影响因素分析显示,土壤有机碳分配系数(Koc)对2个模型输出影响最大,可将Koc〉400L·kg^-1作为判断某种农药预测浓度〈0.1μg·L^-1经验性指标。2个模型的PEC值和土壤好氧半衰期的对数呈线性关系,当土壤好氧半衰期〉10d时,模型的PEC值随土壤好氧半衰期的增大而迅速增高。水解半衰期为PRZM-GW模型输入项,决定了PRZM-GW模型模拟的农药浓度随年变化趋势。水中溶解度是China-PEARL的输入项,但对模型PEC值影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号