首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This research attempts to model the complexity of planting trees to increase China's CO(2) sequestration potential by using a GIS-based integrated assessment (IA) approach. We use the IA model to assess the impact of China's Grain for Green reforestation and afforestation program on farmer and state incomes as well as CO(2) sequestration in Liping County, Guizhou Province. The IA model consists of five sub-models for carbon sequestration, crop income, timber income, Grain for Green, and carbon credits. It also includes a complementary qualitative module for assessing program impacts by gender and ethnicity. Using four scenarios with various assumptions about types of trees planted, crop incomes by township, CO(2) credit prices, state subsidies, methods for estimating carbon sequestered, and harvesting of trees, we find great variation in the impact of the Grain for Green program on incomes and on carbon sequestered over a 48 year period at both the county and township levels.  相似文献   

2.
Abstract: To combat its growing ecological problems, China has implemented a large‐scale Natural Forest Protection Program (NFPP). Under the umbrella of this program, the Sloping Land Conversion Program (SLCP) was established in 1999 to return cultivated land with slopes of 25° or more to perennial vegetation. However, the regional impacts on water resource management that are incurred by afforestation have not been carefully evaluated, especially in the subalpine region of southwestern China. The purpose of the present study was to provide reference values for the SLCP by evaluating the potential impact of afforestation on water yield under different climatic regimes. Accordingly, evapotranspiration (ET) in cropland (CL), shrubland, and general forest was calculated using a modification of Thornthwaite’s method, and in coniferous forest, broad‐leaved forest (BF), and mixed coniferous and broad‐leaved forest (MF) using the Surface Energy Balance Algorithm for Land (SEBAL) model. The results of both approaches showed that afforestation reduces water yield by 9.6‐24.3% depending on the types of conversion and climatic conditions. Water‐yield reduction is greatest (>143.4 mm, or 24.3%) when CL is converted to BF in dry climate conditions. Compared with the other forest types studied, coniferous plantations prevented water‐yield reduction by as much as 9.6% because of their relatively low levels of ET. It is expected that implementation of the SLCP, together with continuing climate change, will further pressure regional water resources. Thus, the effectiveness of afforestation must be evaluated in a broader context while taking into account its positive ecological aspects, such as soil‐erosion control, the preservation of biodiversity, and the significant carbon sequestration provided by forests.  相似文献   

3.
Terrestrial systems represent a significant potential carbon (C) sink to help mitigate or offset greenhouse gas emissions. Nearly 3.2 Mha are permitted for mining activities in the United States, which are required to be reclaimed with vegetative cover. While site-specific studies have assessed C accumulation on reclaimed mine sites, regional analyses to estimate potential C increases have not been conducted. For this analysis, potential C sequestration is analyzed on 567,000 ha of mine land in a seven-state region reclaimed to cropland, pasture, or forest. Carbon accumulation is estimated for cropland, pasture, and forest soils, forest litter layer, and aboveground biomass by estimating average annual rates of C accumulation from site-specific and general C sequestration studies. The average annual rate of C storage is highest when mine land is reclaimed to forest, where the potential sequestration is 0.7 to 2.2 Tg yr(-1). The C from soils, litter layer, and biomass from mine lands reclaimed to forest represents 0.3 to 1.0% of the 1990 CO2 emissions from the study region (919 Tg CO2). To achieve the greenhouse gas (GHG) emission reduction goal of 7% below the 1990 level as proposed by the Kyoto Treaty requires CO2 emissions in the study area to be reduced by just over 64 Tg CO2. The potential carbon storage in mine sites reclaimed to forest could account for 4 to 12.5% of these required reductions.  相似文献   

4.
In 1999 China adopted the "Conversion of Cropland to Forest and Grassland Program" (CCFGP), a nationwide ecological recovery program, to minimize wide-scale soil erosion and vegetation degradation in China, as well as to improve water budgeting results. In the 10 yr since implementation, the CCFGP has resulted in the recovery and reforestation of >100,000 km of cropland and bare land, though the quantitative effect of this program on catchment water budget is not entirely clear. Therefore, we used the Soil and Water Assessment Tool to evaluate and quantify the effects of the CCFGP on the water budget of the Jinghe River catchment, a tributary of the Yellow River covering the central region of the Loess Plateau. Our results indicated that precipitation had dropped by 12.0% from the 1970s (611.6 mm) to the 2000s (538 mm) and that there was a corresponding 25.2% decrease in humidity index from 0.48 to 0.36. Before the CCFGP's implementation, forest and grassland had been decreasing, while bare land, cropland, and shrub land had been increasing. After the implementation of the CCFGP, the opposite trend was observed. Moreover, streamflow increased by about 15 and 20% for the upstream and middle stream subbasins, respectively, while soil water content also showed an obvious increase. Over the same period, evapotranspiration decreased by 5.2 and 13.5 mm and runoff decreased by 37.5 and 38.6% in the two subbasins. The same trends were obtained in the downstream subbasin, where changes were even greater. As a result of the reduced runoff and evapotranspiration, utilization of water resources was more efficient and ecological environment was improved under the CCFGP policy. Our results indicate the CCFGP resulted in a favorable ecological impact and should therefore be maintained.  相似文献   

5.
Chang R  Fu B  Liu G  Liu S 《Environmental management》2011,48(6):1158-1172
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.  相似文献   

6.
The United States Climate Change Initiative includes improvements to the U.S. Department of Energy's Voluntary Greenhouse Gas Reporting Program. The program includes specific accounting rules and guidelines for reporting and registering forestry activities that reduce atmospheric CO2 by increasing carbon sequestration or reducing emissions. In the forestry sector, there is potential for the economic value of emissions credits to provide increased income for landowners, to support rural development, to facilitate the practice of sustainable forest management, and to support restoration of ecosystems. Forestry activities with potential for achieving substantial reductions include, but are not limited to: afforestation, mine land reclamation, forest restoration, agroforestry, forest management, short-rotation biomass energy plantations, forest protection, wood production, and urban forestry. To be eligible for registration, the reported reductions must use methods and meet standards contained in the guidelines. Forestry presents some unique challenges and opportunities because of the diversity of activities, the variety of practices that can affect greenhouse gases, year-to-year variability in emissions and sequestration, the effects of activities on different forest carbon pools, and accounting for the effects of natural disturbance.  相似文献   

7.
Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO2 year?1 in 1921 to 60,635 t CO2 year?1 in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO2 year?1 by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO2 fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas.  相似文献   

8.
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.  相似文献   

9.

Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  相似文献   

10.
Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.  相似文献   

11.
/ Implemented in the context of a long history ofintense public debate, forestry practices applied on private forest land areregulated in some form by 38 states. State regulatory activities can involvemany agencies implementing numerous regulatory laws, a single forestry agencyadministering a comprehensive regulatory program, or a combination of thetwo. Regulatory programs are designed to protect resources such as soils,water, wildlife, and scenic beauty. Program administration often involvesrule promulgation, harvest plan reviews, coordination of interagency reviews,and pre- and postharvest on-site inspections. Forest practice rules usuallyfocus on reforestation, forest roads, harvest procedures, and wildlifehabitat protection. Emerging regulatory trends include growth of multiagencyregulatory authority and associated jurisdictional conflicts, increasedtendencies to narrowly specify standards in statutes and rules, emergence ofcontingent regulations, growing sensitivity to processes enabling theadoption of new forest practice technologies and an ability to addresscumulative effects, interest in collaborative rule-making stemming fromheightened concern over legalization of administration processes, and growingconcern over the constitutional foundations for regulatory programs and thegovernment and private sector cost of implementing such programs.KEY WORDS: Ecosystem management; Forestry practices; Private landowners;Regulatory programs; State government  相似文献   

12.
Although the native forests of China are exceptionally diverse, only a small number of tree species have been widely utilized in forest plantations and reforestation efforts. We used dendrochronological sampling methods to assess the potential growth and carbon sequestration of native tree species in Jilin Province, Northeast China. Trees were sampled in and near the Changbaishan Biosphere Reserve, with samples encompassing old-growth, disturbed forest, and plantations. To approximate conditions for planted trees, sampling focused on trees with exposed crowns (dominant and co-dominant individuals). A log-linear relationship was found between diameter increment and tree diameter, with a linear decrease in increment with increasing local basal area; no significant differences in these patterns between plantations and natural stands were detected for two commonly planted species (Pinus koraiensis and Larix olgensis). A growth model that incorporates observed feedbacks with individual tree size and local basal area (in conjunction with allometric models for tree biomass), was used to project stand-level biomass increment. Predicted growth trajectories were then linked to the carbon process model InTEC to provide estimates of carbon sequestration potential. Results indicate substantial differences among species, and suggest that certain native hardwoods (in particular Fraxinus mandshurica and Phellodendron amurense), have high potential for use in carbon forestry applications. Increased use of native hardwoods in carbon forestry in China is likely to have additional benefits in terms of economic diversification and enhanced provision of "ecosystem services", including biodiversity protection.  相似文献   

13.
The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0–15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO4–oxidation C), C management index (CMI) and inorganic C (CaCO3–C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO3 enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0–87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09–0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C sequestration reached up to 1.8–9.4 and 7.5–17.3 Mg ha?1 at the 0–15 cm layer over a 7- and 32-year rehabilitation period compared to the control site, suggesting that desertification control has a great potential for sequestering soil C and improving soil quality in northwest China.  相似文献   

14.
Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation—the Ethiopian organization’s first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits—facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project—empowering the community to more sustainably manage their communal lands.  相似文献   

15.
This paper assesses the potential of an intensive afforestation program as a measure of reducing the atmospheric concentration of carbon in Nigeria. The results presented are based on the recently completed Nigerian Country Studies Program on Climate Change Mitigation. A comprehensive mitigation analysis process (COMAP) model was employed to carry out detailed cost/benefit evaluation of the mitigation option. The end-use based scenario adopted was considered the most appropriate strategy to sustainably implement the mitigation option in Nigeria.The analyses showed that the country could significantly reduce net carbon emission while at the same time meet all her essential domestic wood needs, if approximately 7.5×106 ha of wasteland could be committed to an afforestation program over the 40 year period of projection. The initial cost of establishing such forest plantations, taking cognisance of the opportunity cost of land averaged at about US$500/ha, or in carbon terms, a unit cost of about $13 per tonne of carbon. In terms of carbon flow, if all the end-product based plantations considered (i.e. fuelwood, poles, pulpwood, sawlogs and veneer) were fully established and maintained, it was estimated that by the year 2030, the total carbon stored in the afforested land would be about 638.0×106 t of carbon with an annual incremental rate of 16.0×106 t of carbon. Other economic indicators (i.e. net present value of benefits, present value of costs and benefit for reduced atmospheric carbon) when evaluated showed that the afforestation option could be economically viable even when the investment capital was discounted at rates ranging from 9 to 33 percent for different wood products. It should be noted, however that implementation of such a program would require huge sums of money and a high degree of commitment on the part of Federal, State and Local governments if the associated financial, social and environmental benefits were to be derived.  相似文献   

16.
Policymakers, program managers, and landowners need information about net terrestrial carbon sequestration in forests, croplands, grasslands, and shrublands to understand the cumulative effects of carbon trading programs, expanding biofuels production, and changing environmental conditions in addition to agricultural and forestry uses. Objective information systems that establish credible baselines and track changes in carbon storage can provide the accountability needed for carbon trading programs to achieve durable carbon sequestration and for biofuels initiatives to reduce net greenhouse gas emissions. A multi-sector stakeholder design process was used to produce a new indicator for the 2008 State of the Nation's Ecosystems report that presents metrics of carbon storage for major ecosystem types, specifically change in the amount of carbon gained or lost over time and the amount of carbon stored per unit area (carbon density). These metrics have been developed for national scale use, but are suitable for adaptation to multiple scales such as individual farm and forest parcels, carbon offset markets and integrated national and international assessments. To acquire the data necessary for a complete understanding of how much, and where, carbon is gained or lost by U.S. ecosystems, expansion and integration of monitoring programs will be required.  相似文献   

17.
Land use and ecosystem services need to be assessed simultaneously to better understand the relevant factors in sustainable land management. This paper analyzed land use changes in the middle reach of the arid Heihe River Basin in northwest China over the last two decades and their impacts on water resources and soil organic carbon (SOC) storage. The results indicated that from 1986 to 2007: (1) cropland and human settlements expanded by 45.0 and 17.6 %, respectively, at the expense of 70.1, 35.7, and 4.1 % shrinkage on woodland, grassland, and semi-shrubby desert; (2) irrigation water use was dominant and increased (with fluctuations) at an average rate of 8.2 %, while basic human water consumption increased monotonically over a longer period from 1981 to 2011 at a rate of 58 %; and (3) cropland expansion or continuous cultivation led to a significant reduction of SOC, while the land use transition from grassland to semi-shrubby desert and the progressive succession of natural ecosystems such as semi-shrubby desert and grassland, in contrast, can bring about significant carbon sequestration benefits. The increased water consumption and decreased SOC pool associated with some observed land use changes may induce and aggravate potential ecological risks for both local and downstream ecosystems, including water resource shortages, soil quality declines, and degeneration of natural vegetation. Therefore, it is necessary to balance socioeconomic wellbeing and ecosystem services in land use planning and management for the sustainability of socio-ecological systems across spatiotemporal scales, especially in resource-poor arid environments.  相似文献   

18.
We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.  相似文献   

19.
Models of carbon storage in softwood and hardwood trees and forest soils and its emission from timber products and waste are developed and integrated with data on storage benefits to yield estimates of the value of the net carbon flux generated by afforestation. The long-term nature of the processes under consideration and the impact of varying the discount rate are explicitly incorporated within the model. A geographical information system (GIS) is used to apply carbon sequestration models to data on tree growth and soil type distribution for a large study area (the entire country of Wales). The major findings are: (1) all three elements under analysis (carbon sequestration in livewood, release from different products and waste, and storage or emission from soils) play a vital role in determining overall carbon flux; (2) woodland management has a substantial impact upon carbon storage in livewood however the choice of discount rate exerts the largest overall influence upon estimated carbon flux values; (3) timber growth rates (yield class) also have a major impact upon values; (4) tree species does affect storage values, however this is less important than the other factors listed above; (5) non-peat soils generally sequester relatively low levels of carbon. Planting upon peat soils can result in very substantial emissions of carbon which exceed the level of storage in livewood.The GIS is used to produce valuation maps which can be readily incorporated within cost-benefit analyses regarding optimal locations for conversion of land into forestry.  相似文献   

20.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号