首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   4篇
基础理论   4篇
污染及防治   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2006年   3篇
  2002年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th century, followed by regrowth and net forest carbon sequestration in the 20th century. Recent data and knowledge of the general behavior of forests after disturbance suggest that the rate of forest carbon sequestration is declining. A goal of an additional 100 to 200 Tg C/yr of forest carbon sequestration is achievable, but would require investment in inventory and monitoring, development of technology and practices, and assistance for land managers.  相似文献   
2.
The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation Service STATSGO database, with soil dynamics following assumptions based on results of site-specific studies, and area estimates from the USDA Forest Service. Forest Inventory and Analysis data and national-level land cover data sets. Harvesting is assumed to have no effect on soil C. Land use change and forest type transitions affect soil C. We apply the methodology to the southeastern region of the United States as a case study.  相似文献   
3.
4.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   
5.
The United States Climate Change Initiative includes improvements to the U.S. Department of Energy's Voluntary Greenhouse Gas Reporting Program. The program includes specific accounting rules and guidelines for reporting and registering forestry activities that reduce atmospheric CO2 by increasing carbon sequestration or reducing emissions. In the forestry sector, there is potential for the economic value of emissions credits to provide increased income for landowners, to support rural development, to facilitate the practice of sustainable forest management, and to support restoration of ecosystems. Forestry activities with potential for achieving substantial reductions include, but are not limited to: afforestation, mine land reclamation, forest restoration, agroforestry, forest management, short-rotation biomass energy plantations, forest protection, wood production, and urban forestry. To be eligible for registration, the reported reductions must use methods and meet standards contained in the guidelines. Forestry presents some unique challenges and opportunities because of the diversity of activities, the variety of practices that can affect greenhouse gases, year-to-year variability in emissions and sequestration, the effects of activities on different forest carbon pools, and accounting for the effects of natural disturbance.  相似文献   
6.
We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak-hickory forests in the region. However, MODIS underestimated NPP for less-dominant northern hardwood forests and overestimated NPP for coniferous forests. Causes of inaccurate estimates of NPP by MODIS were (1) an aggregated classification and parameterization of diverse deciduous forests in different climatic environments into a single class that averages different radiation conversion efficiencies; and (2) lack of soil water constraints on NPP for forests or areas that occur on thin or sandy, coarse-grained soil. We developed the "available soil water index" for adjusting the MODIS NPP estimates, which significantly improved NPP estimates for coniferous forests. The MODIS NPP estimates have many advantages such as globally continuous monitoring and remarkable accuracy for large scales. However, at regional or local scales, our study indicates that it is necessary to adjust estimates to specific vegetation types and soil water conditions.  相似文献   
7.
Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.  相似文献   
8.
High levels of polyphloroglucinol phenolics in marine brown algae are usually interpreted as a defensive response to herbivory. However, tropical brown algae generally contain very low levels of phenolics, even though herbivory in many tropical systems (e.g. coral reefs) is intense. This apparent paradox would be explained if polyphenolics did not deter tropical herbivores, in which case selection by herbivores for high levels of phenolics in tropical algae would be weak. To examine this hypothesis, in February 1989 we presented mixed assemblages of herbivorous fishes on the Great Barrier Reef with tropical, phenolic-poor brown algae (primarilySargassum spp.) and closely related (conspecifics in one instance) phenolic-rich temperate species. Different species of brown algae were eaten at very different rates, but these differences were not correlated with variation in the phenolic levels among the plants. TLC and NMR analyses showed no evidence of other, non-polar, metabolites in these algae, with the exception of the temperate speciesHomoeostrichus sinclairii. Thus, variation in non-polar metabolites also did not explain the differences in susceptibility to herbivores among these algae. We conclude that the herbivorous fishes studied here were not deterred by phenolic-rich algae, which suggests that levels of phenolics in many tropical algae may generally be low due to their ineffectiveness as defences. However, alternative explanations for the pattern are possible, and these are discussed.  相似文献   
9.
Habitat-forming organisms often determine the structural properties and food resources available to a wide diversity of associated mobile species. Sessile invertebrate assemblages on marine hard substrates support an abundant fauna of mobile invertebrates whose associations with traits of their host assemblages are poorly known. To assess how changes to habitat-forming species are likely to affect their associated mobile fauna, the relationships between abundance, diversity and composition of mobile invertebrates and the diversity, cover and composition of the sessile assemblages they use as habitat were quantified in Sydney Harbour, Australia (33°50′S, 151°16′E). Similar compositions of sessile species were more likely to share a similar composition of mobile species, but univariate measures of the habitat (percent cover, species and functional diversity, prevalence of non-indigenous species) did not predict variation in associated mobile assemblages. These results demonstrate that in this habitat it is difficult to predict the diversity of marine assemblages based on common surrogate measures of biodiversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号