首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A multimedia environmental fate model was developed to study the temporal dynamics and spatial distribution of a chemical pollutant at watershed scale. The theoretical considerations and implementation of the model were described in the accompanying paper (Part I). This paper presents the result of a test simulation on the transport of trichloroethylene (TCE) in the Connecticut River Basin. The simulation results were reported as time series of concentrations and inter-media transport fluxes in the compartments of atmosphere, plant, soil, surface water, and sediment. Predicted concentrations from the test simulation were compared with published field data or predictions by validated models. The temporal trends in TCE predictions were evaluated by comparing the simulation results with monthly TCE concentrations in various environmental compartments and monthly fluxes of inter-media transport processes. Results indicated that the simulation results were in reasonable agreement with reported data in the literature. The results also revealed that the mass transport of TCE from the atmosphere compartment to soil and surface water was a major route of TCE dispersion in the environment.  相似文献   

2.
A Level III fugacity model was applied to characterize the transfer processes and environmental fate of benzo[a]pyrene in wastewater-irrigated areas of Tianjin, China. The physical-chemical properties and transfer parameters of benzo[a]pyrene were used in the model and the concentration distribution of benzo[a]pyrene in sediment, soil, water, air, fish, and crop compartments, as well as transfer fluxes across the compartments, were then derived under steady-state assumptions. The calculated results were compared with monitoring data for air, soil, water, and sediment collected from the literature. The results indicate that there was generally good agreement and the differences were within an order of magnitude for air, soil, and sediment. The concentration of benzo[a]pyrene in the ambient air in the area was very low with a majority present sorbed to aerosol. In the water compartment, approximately 70% of benzo[a]pyrene dissolved in water phase. Relatively high concentrations of the compound were found in the soil and sediment, with the soil serving as the dominant sink in the area. Benzo[a]pyrene, with a slow metabolic rate, was found to accumulate in fish in the area.  相似文献   

3.
The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good experimental design for studying mobility and transport processes of herbicides in field conditions.  相似文献   

4.
There is a current need to simulate leaching and runoff of pesticide from rice (Oryza sativa L.) paddies for assessing environmental impacts on a valuable agricultural system. The objective of this study was to develop a model for determining predicted environmental concentration (PEC) in soil, runoff, and ground water through the linkage of two models, rice water quality model (RICEWQ) and vadose zone transport model (VADOFT), to simulate pesticide fate and transport within a rice paddy and underlying soil profile. Model performance was evaluated with a field data set obtained from a 2-yr field experiment in 1997 and 1998 in northern Italy. The predictions of amount of pesticide running off from the paddy field and accumulating in the paddy sediment were in agreement with measured values. Leaching into the vadose zone accounted for approximately 19% of the applied dose, but only a small amount of chemical (<0.1%) was predicted to reach ground water at a 5-m depth due to sorption and transformation in the soil. The permeability of the soil and the water management practices in the paddy field were shown to have a strong influence on pesticide fate. These factors need to be well characterized in the field if model predictions are to be successful. The combined model developed in this work is an effective tool for exposure assessments for soil, surface water, and ground water, in the particular conditions of rice cultivation.  相似文献   

5.
To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.  相似文献   

6.
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.  相似文献   

7.
A numerical simulation model of pesticide runoff through vegetative filer strips (PRVFS) was developed as a tool for investigating the effects of pesticide transport mechanisms on VFS design in dormant-sprayed orchard. The PRVFS model was developed applying existing theories such as kinematic wave theory and mixing zone theory for pesticide transport in the bare soil area. For VFS area, the model performs flow routing by simple mass accounting in sequential segments and the pesticide mass balance by considering pesticide washoff and adsorption processes on the leaf, vegetative litter, root zone and soil. Model sensitivity analysis indicated that pesticide transfer from surface soil to overland flow and pesticide washoff from the VFS were important mechanisms affecting diazinon transport. The VFS cover ratio and rainfall intensity can be important design parameters for controlling diazinon runoff using inter-row VFS in orchard. The PRVFS model was validated using micro-ecosystem simulation of diazinon transport for 0, 50 and 100% VFS cover conditions. The PRVFS model is shown to be a beneficial tool for evaluating and analyzing possible best management practices for controlling offsite runoff of dormant-sprayed diazinon in orchards during the rainy season.  相似文献   

8.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

9.
Limited information is available on the effects of contaminant aging (i.e., the contact time of Cd with the soil) on Cd transport in soils. We conducted displacement experiments in which indigenous Cd and freshly applied Cd were leached simultaneously from undisturbed samples of three Spodosol horizons. Sorption of Cd was described using Freundlich isotherms, whereas transport was described as a convection-dispersion process. Parameter optimization analysis using a mobile-immobile transport model applied to nonsorbing tracer displacement data showed that 16 to 22% of the water in the columns was immobile. The low dimensionless mass transfer coefficients in the mobile-immobile model were indicative of diffusion-limited transfer between mobile and immobile water, and hence physical nonequilibrium. A two-site kinetic sorption model could be fitted closely to breakthrough curves of the non-aged Cd for three soil horizons. No conclusive evidence was found that contaminant aging in soil affects cadmium transport. On the one hand, predictions of aged Cd leaching, using parameters estimated from displacement experiments with nonaged Cd, differed from those for the aged Cd in the E horizon. On the other hand, no meaningful differences in transport behavior between aged and non-aged Cd were found for the humus Bh and Bh/C horizons. The two-site kinetic rate coefficient alphac was found to depend on water flux, further indicating that mass transfer between sorption sites and the liquid is limited by diffusion rather than by kinetic sorption.  相似文献   

10.
以水稻为供试作物,水稻土为供试土壤,采用田间定位试验的方法,以施肥后田面水中的总氮(TN)、NH4^+-N和NO3^--N浓度为指标,进行了施氮后田面水中氮素释放规律研究。结果表明,施肥后田面水中的总氮(TN)、NH4+-N和NO3--N浓度随着施肥量的增加而增加,随着时间的推移三者的浓度呈先上升后下降的趋势,一周后趋于稳定;以氮素表观盈余率和植株吸氮量为指标,从环境安全角度研究水稻生产化学氮肥投入阈值,初步确定试验区环境安全化学氮肥投入阈值为189.22~218.98 kg·hm^-2;以水稻产量为指标,进行了粮食安全氮肥投入阈值研究,初步确定试验区水稻生产粮食安全化学氮肥投入阈值为202.24~288.89 kg·hm^-2。综合考虑粮食安全和环境安全,试验区化学氮肥投入阈值为202.24~218.98 kg·hm^-2。  相似文献   

11.
12.
The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil.  相似文献   

13.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   

14.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

15.
Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.  相似文献   

16.
Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various environmental conditions and application methods.  相似文献   

17.
Antibiotics reach soils via spreading of manure or sewage sludge. Knowledge on the transport behavior of antibiotics in soils is needed to assess their environmental fate. The effect of flow rate and applied mass, i.e., input concentration and pulse duration, on the transport of 14C-sulfadiazine (SDZ; 4-aminoN-pyrimidin-2-yl-benzenesulfonamide) was investigated with soil column experiments and numerical studies. Sulfadiazine was applied in pulses (6.8, 68 or 306 h) under steady-state (0.051 and 0.21 cm h(-1)) and intermittent flow conditions and at two input concentrations (0.57 and 5.7 mg L(-1)). Breakthrough curves (BTCs) of 14C were measured and for one experiment concentrations of SDZ, and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) and N(1)-2-(4-hydroxypyrimidinyl)benzenesulfanilamide (4-OH-SDZ) were determined. After finalizing the leaching experiments, 14C was quantified in different slices of the columns. A lower flow rate led to remarkably lower eluted masses compared with the higher flow rates. All BTCs could be described well using a three-site attachment-detachment model for which a common set of parameters was determined. However, the BTC obtained with the high input concentration was slightly better described with a two-site isotherm-based model. The prediction of the concentration profiles was good with both model concepts. The fitted sorption capacities decreased in the order SDZ > 4-OH-SDZ > An-SDZ. Overall, the experiments reveal the presence of similar mechanisms characterizing SDZ transport. The dependence of model performance on concentration implies that although the three-site attachment-detachment model is appropriate to predict the transport of SDZ in soil columns, not all relevant processes are adequately captured.  相似文献   

18.
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.  相似文献   

19.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   

20.
Transport models in which the liquid phase is partitioned between conducting and nonconducting regions allow the possibility that degradation and sorption are different in these regions. However, there is little information on biological or chemical differences between conducting and nonconducting regions of the soil matrix. Previous work by the authors on Br transport through unsaturated, intact soil cores of Dundee silty clay loam (fine-silty, mixed, active, thermic Typic Endoaqualf) indicated non-equilibrium conditions that could be well-described by a two-region model. Fitted parameters indicated little solute transfer between flow regions, suggesting that dye movement in unsaturated soil might delineate conducting and nonconducting regions of this soil. Steady-state, unsaturated flow was established in intact cores (10 by 30 cm) of the Dundee soil, then Br and erioglaucine dye were displaced through these cores. The soil cores were then sectioned into 5-cm segments and stained soil was separated from unstained soil. Microbial biomass C, organic C, and dye sorption K(D) (= g(sorbed) kg(-1)soil/g L(-1)) values for stained and unstained soil were determined. Stained soil had higher microbial biomass C but generally lower organic C and lower affinity for dye sorption than unstained soil from the same depth increment. Fraction of immobile water, dispersion, and mass transfer between conducting and nonconducting regions were consistent with previous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号