首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

2.
Understanding the problems of grazing land in vertisol areas and seeking long-lasting solutions is the central point where mixed crop livestock is the second stay for the majority of the population. In order to understand this, the current study was conducted at two sites, one with 0–4% slope and the other with 4–8% slope at Ginchi watershed, 80 km west of Addis Ababa, Ethiopia. The specific objectives of the study were to quantify changes in plant species richness, biomass, plant cover, and soil physical and hydrological properties. The grazing regimes were: moderate grazing (regulated), heavy grazing (free grazing), and no grazing (closed to any grazing), which was considered the control treatment. The results showed that the biomass yield in nongrazed plots was higher than in the grazed plots. However, the biomass yield in grazed plots improved over the years. Species richness and percentage of dominant species attributes were better in medium grazed plots than the other treatments. Soil compaction was higher in very heavily grazed plots than in nongrazed and medium-grazed plots. In contrast to that, the soil water content and infiltration rate were better in nongrazed plots than in grazed plots. Soil loss in grazed plots decreased with the increase of biomass yields and as the soil was more compacted by livestock trampling during the wet season. Finally since the medium stocking rate is better in species richness and plant attributes, and lies between nongrazed and heavily grazed plots in the rest of the measured parameters, it could be the appropriate stocking rate to practice by the smallholder farmer.  相似文献   

3.
This study describes soil water repellency developed under prolonged irrigation with treated sewage effluent in a semiarid environment. Soil surface layer (0-5 cm) and soil profile (0-50 cm) transects were sampled at a high resolution at the close of the irrigation season and rainy winter season. Samples from 0- to 5-cm transects were subdivided into 1-cm slices to obtain fine scale resolution of repellency and organic matter distribution. Extreme to severe soil water repellency in the 0- to 5-cm soil surface layer persisted throughout the 2-yr study period in the effluent-irrigated Shamouti orange [Citrus sinensis (L.) Osbeck cv. Shamouti] orchard plot. Nearby Shamouti orange plots irrigated with tap water were either nonrepellent or only somewhat repellent. Repellency was very variable spatially and with depth, appearing in vertically oriented "repellency tongues." Temporal and spatial variability in repellency in the uppermost 5-cm soil surface layer was not related to seasonality, soil moisture content, or soil organic matter content. Nonuniform distribution of soil moisture and fingered flow were observed in the soil profile after both seasons, demonstrating that the repellent layer had a persistent effect on water flow in the soil profile. A lack of correlation between bulk density and volumetric water content in the soil profile demonstrates that the observed nonuniform spatial distribution of moisture results from preferential flow and not heterogeneity in soil properties. Soil water repellency can adversely affect agricultural production, cause contamination of underlying ground water resources, and result in excessive runoff and soil erosion.  相似文献   

4.
ABSTRACT Spring runoff from two forested watersheds in northern Minnesota is a function of annual snowfall, soil water recharge, and water supply rates. A drainage basin with a clay soil and a hardwood overstory had greater snowmelt and water supply rates than another drainage basin with a sandy soil and conifer overstory. The average soil water recharge rate for the clay soil was 28 percent less than for the sandy soil. The lower recharge rate of the clay soil resulted in spring runoff which averaged 40 percent of water supplied during the three year study while an average of two percent was produced on the sandy soil. Soil frost which affected soil water recharge varied between soil types and was influenced by amount of soil water storage and snow cover.  相似文献   

5.
Monthly temperature and precipitation data for 923 United States Geological Survey 8-digit hydrologic units are used as inputs to a monthly water balance model to compute monthly actual evapotranspiration, soil moisture storage, and runoff across the western United States (U.S.) for the period 1900 through 2020. Time series of these water balance variables are examined to characterize and explain the dry conditions across the western U.S. since the year 2000. Results indicate that although precipitation deficits account for most of the changes in actual evapotranspiration and runoff, increases in temperature primarily explain decreases in soil moisture storage. Specifically, temperature has been particularly impactful on the magnitude of negative departures of soil moisture storage during the spring (April through June) and summer (July through September) seasons. These effects on soil moisture may be particularly detrimental to agriculture in regions already stressed by drought such as the western U.S.  相似文献   

6.
ABSTRACT: Remotely sensed soil moisture data measured during the Southern Great Plains 1997 (SGP97) experiment in Oklahoma were used to characterize antecedent soil moisture conditions for the Soil Conservation Service (SCS) curve number method. The precipitation‐adjusted curve number and the soil moisture were strongly related (r2= 0.70). Remotely sensed soil moisture fields were used to adjust the curve numbers and the runoff estimates for five watersheds, in the Little Washita watershed; the results ranged from 2.8 km2 to 601.6 km2. The soil moisture data were applied at two spatial scales, a finer one (800 m) measuring spatial resolution and a coarser one (28 km). The root mean square error (RMSE) and the mean absolute error (MAE) of the runoff estimated by the standard SCS method was reduced by nearly 50 percent when the 800 m soil moisture data were used to adjust the curve number. The coarser scale soil moisture data also significantly reduced the error in the runoff predictions with 41 percent and 28 percent reductions in MAE and RMSE, respectively. The results suggest that remote sensing of soil moisture, when combined with the SCS method, can improve rainfall runoff predictions at a range of spatial scales.  相似文献   

7.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

8.
Rural areas represent approximately 95% of the 14000 km(2) Alabama Black Belt, an area of widespread Vertisols dominated by clayey, smectitic, shrink-swell soils. These soils are unsuitable for conventional onsite wastewater treatment systems (OWTS) which are nevertheless widely used in this region. In order to provide an alternative wastewater dosing system, an experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial. The experimental system that integrates a seasonal cropping system was evaluated for two years on a 500-m(2) Houston clay site in west central Alabama from August 2006 to June 2008. The SDI system was designed to start hydraulic dosing only when field moisture was below field capacity. Hydraulic dosing rates fluctuated as expected with higher dosing rates during warm seasons with near zero or zero dosing rates during cold seasons. Lower hydraulic dosing in winter creates the need for at least a two-month waste storage structure which is an insurmountable challenge for rural homeowners. An estimated 30% of dosed water percolated below 45-cm depth during the first summer which included a 30-year historic drought. This massive volume of percolation was presumably the result of preferential flow stimulated by dry weather clay soil cracking. Although water percolation is necessary for OWTS, this massive water percolation loss indicated that this experimental system is not able to effective control soil moisture within its monitoring zone as designed. Overall findings of this study indicated that soil moisture controlled SDI wastewater dosing is not suitable as a standalone system in these Vertisols. However, the experimental soil moisture control system functioned as designed, demonstrating that soil moisture controlled SDI wastewater dosing may find application as a supplement to other wastewater disposal methods that can function during cold seasons.  相似文献   

9.
ABSTRACT: The average microwave temperature of the watershed surface as detected by an airborne Passive Microwave Imaging Scanner (PMIS) was compared with the measured Soil Conservation Service (SCS) watershed storm runoff coefficient (CN). Previous laboratory work suggested that microwave response to the watershed surface is influenced by some of the same surface characteristics that affect runoff, i.e., soil moisture, surface roughness, vegetative cover, and soil texture. In order to field test and develop relations between runoff potentfal and microwave response, several highly instrumented watersheds of approximately 1.5 to 17 km2 were scanned under wet- and dry-soil conditions in April and June 1973. The polarized (horizontal and vertical) scans at 2.8 cm wavelength provided the data base from which other values were calculated. The best relationship between runoff coefficients (CN) and PMIS temperatures was observed when horizontally polarized temperatures from the near-dormant, early-growing season flight were used. Lower SCS runoff coefficients seem to be correlated with the cross-polarized response under dry watershed conditions late in the growing season and the difference in horizontal polarized response between wet conditions early in the growing season and dry conditions late in the growing season. To apply the results, the relationships need to be verified further.  相似文献   

10.
ABSTRACT: Soil water potentials, slope throughflow, runoff chemistry, and isotopic composition were monitored in a 97 m2 zero-order basin within the Maimai 8 watershed on the South Island of New Zealand, for a natural rain storm and two artificial water applications. Contrary to results previously reported for other portions of the Maimai catchment, much of the runoff occurred as a shallow subsurface organic layer flow. For the 47 mm natural rain event, pre-storm soil matric potential ranged from ?60 to ?150 cm H2O. No saturation was produced within the profile, and the majority of storm runoff emanated from flow within the organic horizon perched on the mineral soil surface. Hillslope applications corroborated this interpretation by showing >90 percent new water flushing with negligible mineral soil moisture response. Although the mechanisms cited in the text are not representative of the entire catchment, the study demonstrates: (1) the value of a combined physical-chemical-isotopic approach in quantifying slope processes, and (2) the heterogeneous nature and diversity of slope runoff pathways in a relatively homogeneous catchment.  相似文献   

11.
Soil Characteristics and Management in an Urban Park in Hong Kong   总被引:18,自引:0,他引:18  
3   threshold. With diminished porosity, transmission of air and water, storage of plant-available moisture, and root growth suffer. Chemically, the samples have an unnatural alkaline pH; inadequate organic matter, nitrogen, phosphorus, exchangeable cations; and limited cation exchange capacity. The results can help park-soil management, including the need to evaluate soil in planned park sites, salvage high-grade soil parcels, prevent construction damage, ameliorate structure by mechanical operations and suitable amendments, and replace site soil of very poor quality. Edaphic problems can be forestalled or solved by treating soil as an integral component of park planning and management based on scientific principles and methods.  相似文献   

12.
ABSTRACT: A bromide tracer was used to evaluate percolate water and ion movement in the upper 1.2 m of soil at a proposed sewage effluent irrigation site located in the Missouri Ozarks. Two plots representing Doniphan silt loam and Crider silt loam soils were sprinkler irrigated with local ground water at a rate of 7.62 cm/week from June through August 1976. Soil water potential, percent soil moisture by volume, and background levels of bromide in soil water, ground water, and precipitation were measured at the study plots. Bromide exchange properties and saturated hydraulic conductivity of the soils were determined in the laboratory. During two selected time periods, irrigation water, was spiked with NaBr (5.0 mg/l Br). Bromide movement through the upper profile was quantified by soil water samples and post-sampling neutron activation analysis. Soil moisture was near saturatin in both soils when the Br tracer was applied. Bromide concentrations above background levels (0.023 mg/l Br, Doniphan silt loam and 0.016 mg/l Br, Crider silt loam) were detected within 2.60 hours at 0.9 m in the Doniphan soil and within 3.75 hours at that depth in the Crider soil. The rate of Br movement in the profile was greater in both soils than the measured saturated hydraulic conductivity, Bromide concentrations above background levels were present in soil water from the study plots for a minimum of 21 days after irrigation with the Br tracer.  相似文献   

13.
Irrigated pastures are significant contributors of phosphorus (P) to inland watercourses, with much of the P coming from applied fertilizer. It was hypothesized that the timing of P fertilizer application relative to irrigation regulates P concentrations in runoff and infiltrating water. To test this hypothesis, a two-by-two factorial experiment was conducted on twelve 8- x 30-m border-irrigated bays growing perennial pasture. Phosphorus fertilizer in the form of single superphosphate (44 kg P ha(-1)) was surface-broadcast onto the bays when the nominal change in soil water deficit reached 0 or 50 mm (U.S. Class A pan evaporation minus rainfall). Following fertilizer application, the bays were again irrigated when the nominal soil water deficit between fertilizing and the subsequent irrigation reached either 0 or 50 mm. The volume of water applied, runoff volume, and changes in soil water content were recorded for the three irrigations following fertilizer application. Total phosphorus (TP) and filtrable reactive phosphorus (FRP, <0.45 microm) concentrations in runoff and at depths of 0.1, 0.3, and 0.6 m in the soil were also measured. Soil water content at fertilizer application had less effect on P concentrations in runoff and soil water than the additional time between fertilizing and irrigating. By allowing a deficit of 50 mm between fertilizer application and irrigation, the average concentration of P in runoff and moving below a soil depth of 0.1 m was approximately halved. To maximize fertilizer use efficiency and minimize environmental effects, a delay should occur between applying P fertilizer and irrigating perennial pasture.  相似文献   

14.
Municipal programs for turfgrass establishment recommend large volume-based application rates of composted municipal biosolids (CMB). This study compared runoff water quality among combinations of two common turfgrass establishment practices and two CMB sources. Bryan- or Austin-CMB were incorporated into 5 cm of soil at a rate of 12.5 or 25% by volume (v/v) on an 8.5% slope. Tifway bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy, var. Tifway] sprigs were planted and established; sod, produced at a separate site using either CMB amendment at the 25% v/v rate, was transplanted to the runoff plots on the same day. A mature stand of bermudagrass was used as a control. Runoff water was collected after each of eight natural rain events during the sampling period. Total runoff water loss (mm) was similar for the CMB-amended sprigged and transplanted sod stands. The concentration of total dissolved P (TDP) in runoff water was greatest from the transplanted sod in the first seven rain events (4.1 to 7.5 mg L(-1)). The concentration of TDP in runoff water was similar at both the 12.5 and 25% v/v incorporation rates. Regression analysis indicated Mehlich-3-extractable soil test P concentrations in soil amended with CMB were positively correlated to concentration and mass loss of dissolved P in runoff. At similar application rates, dissolved P loss in runoff water was reduced by incorporating CMB into the soil on site rather than transplanting sod produced with CMB.  相似文献   

15.
Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to establish the policy framework for actions focused on preventing soil degradation and conserving its productive potential.  相似文献   

16.
A multi‐scale soil moisture monitoring strategy for California was designed to inform water resource management. The proposed workflow classifies soil moisture response units (SMRUs) using publicly available datasets that represent soil, vegetation, climate, and hydrology variables, which control soil water storage. The SMRUs were classified, using principal component analysis and unsupervised K‐means clustering within a geographic information system, and validated, using summary statistics derived from measured soil moisture time series. Validation stations, located in the Sierra Nevada, include transect of sites that cross the rain‐to‐snow transition and a cluster of sites located at similar elevations in a snow‐dominated watershed. The SMRUs capture unique responses to varying climate conditions characterized by statistical measures of central tendency, dispersion, and extremes. A topographic position index and landform classification is the final step in the workflow to guide the optimal placement of soil moisture sensors at the local‐scale. The proposed workflow is highly flexible and can be implemented over a range of spatial scales and input datasets can be customized. Our approach captures a range of soil moisture responses to climate across California and can be used to design and optimize soil moisture monitoring strategies to support runoff forecasts for water supply management or to assess landscape conditions for forest and rangeland management.  相似文献   

17.
Soil erosion on agricultural land is a growing problem in Western Europe and constitutes a threat to soil quality and to the ability of soils to provide environmental services. The off-site impacts of runoff and eroded soil, principally eutrophication of water bodies, sedimentation of gravel-bedded rivers, loss of reservoir capacity, muddy flooding of roads and communities, are increasingly recognised and costed. The shift of funding in the European Union (EU) from production-related to avoidance of pollution and landscape protection, raises issues of cross-compliance: public support for agriculture has to be seen to give value-for-money. In this context risk-assessment procedures have been introduced to help farmers recognise sites where either certain crops should not be grown or anti-erosion measures are required. In England, Defra [Defra, 2005a. Controlling Soil Erosion: a Manual for the Assessment and Management of Agricultural Land at Risk of Water Erosion in Lowland England. Revised September 2005. Department for Environment, Food and Rural Affairs, London] sets out a system of risk-assessment, including ranking of crops susceptible to erosion and anti-erosion measures, that may be selected. We assess this system using field data for an area of erodible soils in the Rother valley, Sussex. The Defra approach correctly identifies most at-risk fields and, taken together with land-use maps, allows non-compliance with advice to be highlighted. We suggest a simple extension to the system which would further identify at-risk fields in terms of possible damage to roads and rivers from muddy runoff. The increased risk of erosion in the study area is associated with certain crops: potatoes, winter cereals, maize and grazed turnips and seems unlikely to be the result of changes in rainfall which over the last 130 years are minimal. We have not evaluated proposed anti-erosion measures in the area because few have been put into practice. The European Water Framework Directive will increasingly focus attention on agricultural fields as a source of river pollution. Assessing the risk of erosion and the need for field testing of suggested approaches, are not simply issues for the EU, but for the management of global agricultural systems.  相似文献   

18.
19.
Xu XZ  Li MJ  Liu B  Kuang SF  Xu SG 《Environmental management》2012,49(5):1092-1101
A large number of soil and water conservation programs have been implemented on the Loess Plateau of China since the 1950s. To comprehensively assess the merits and demerits of the conservation practices is of great importance in further supervising the conservation strategy for the Loess Plateau. This study calculates the impact factors of conservation practices on soil, water, and nutrients during the period 1954–2004 in the Nanxiaohegou Catchment, a representative catchment in the Loess Mesa Ravine Region of the Loess Plateau, China. Brief conclusions could be drawn as follows: (1) Soil erosion and nutrient loss had been greatly mitigated through various conservation practices. About half of the total transported water and 94.8 % of the total transported soil and nutrients, had been locally retained in the selected catchment. The soil retained from small watersheds do not only form large-scale fertile farmland but also safeguard the Yellow River against overflow. (2) Check dam was the most appropriate conservation practice on the Loess Plateau. In the selected catchment, more than 90 % of the retained soil and water were accomplished by the dam farmland, although the dam farmland occupied only 2.3 % of the total area of all conservation measures. Retention abilities of the characteristic conservation practices were in the following order: dam farmland > terrace farmland > forest land and grassland. (3) The conservation practices were more powerful in retaining sediment than in reducing runoff from the Loess Plateau, and the negative effects of the conservation practices on reducing water to the Yellow River were relatively slight.  相似文献   

20.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号