首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the carbon capture and storage (CCS) chain, transport and storage set different requirements for the composition of the gas stream mainly containing carbon dioxide (CO2). Currently, there is a lack of standards to define the required quality for CO2 pipelines. This study investigates and recommends likely maximum allowable concentrations of impurities in the CO2 for safe transportation in pipelines. The focus is on CO2 streams from pre-combustion processes. Among the issues addressed are safety and toxicity limits, compression work, hydrate formation, corrosion and free water formation, including the cross-effect of H2S and H2O and of H2O and CH4.  相似文献   

2.
One of the most important sources of CO2 emissions are the fossil-fuel fired plants for production of electricity. Removal of CO2 from flue gas streams for further sequestration has been proposed by the International Panel on Climate Change experts as one of the most reliable solutions to mitigate anthropogenic greenhouse emissions. When natural gas is employed as fuel, the molar fraction of CO2 in the flue gas is lower than 5% causing serious problems for capture. The purpose of this work is to present experimental validation of an Electric Swing Adsorption (ESA) technology that may be employed for carbon capture for low molar fractions of CO2 in the flue gas streams. To improve energy utilization, an activated carbon honeycomb monolith with low electrical resistivity was employed as selective adsorbent. A mathematical model for this honeycomb is proposed as well as different ESA cycles for CO2 capture.  相似文献   

3.
The paper presents a methodology for CO2 chain analysis with particular focus on the impact of technology development on the total system economy. The methodology includes the whole CO2 chain; CO2 source, CO2 capture, transport and storage in aquifers or in oil reservoirs for enhanced oil recovery. It aims at supporting the identification of feasible solutions and assisting the selection of the most cost-effective options for carbon capture and storage. To demonstrate the applicability of the methodology a case study has been carried out to illustrate the possible impact of technology improvements and market development. The case study confirms that the CO2-quota price to a large extent influence the project economy and dominates over potential technology improvements. To be economic feasible, the studied chains injecting the CO2 in oil reservoirs for increased oil production require a CO2-quota price in the range of 20–27 €/tonne CO2, depending on the technology breakthrough. For the chains based on CO2 storage in saline aquifers, the corresponding CO2-quota price varies up to about 40 €/tonne CO2.  相似文献   

4.
This work reveals levels of corrosion rate and polarization behavior of carbon steel immersed in aqueous solutions of monoethanolamine (MEA) used in the absorption-based carbon dioxide (CO2) capture process for greenhouse gas reduction from industrial flue gas streams. Such information was obtained from electrochemical-based corrosion experiments under a wide range of the CO2 capture process conditions. The corrosion of carbon steel was evaluated in respect to process parameters including partial pressure of oxygen (O2), CO2 loading in solution, solution velocity, solution temperature, MEA concentration and metal surface condition. Results show that the aqueous MEA solution containing CO2 provides a favorable condition for the corrosion of carbon steel to proceed. Corrosion rate is increased by all tested process parameters. These parametric effects were explained by the electrochemical kinetic data obtained from polarization curves and by the thermodynamic data obtained from Pourbaix diagram.  相似文献   

5.
CO2 capture and geological storage (CCS) is considered as a viable option to mitigate greenhouse gas emissions during the transition phase towards the use of clean and renewable energy. This paper concentrates on the transport of CO2 between source (CO2 capture at plants) and sink (geological storage reservoirs). In the cost estimation of CO2 transport, the pipeline diameter plays an important role. In this respect, the paper reviews equations that were used in several reports on CO2 pipeline transport. As some parameters are not taken into account in these equations, alternative formulas are proposed which calculate the proper inner diameter size based on flow rate, pressure drop per unit length, CO2 density, CO2 viscosity, pipeline material roughness and topographic height differences (the Darcy–Weisbach solution) and, in addition, on the amount and type of bends (the Manning solution). Comparison between calculated diameters using the reviewed and the proposed equations demonstrate the important influence of elevation difference (which is not considered in the reviewed equations) and pipeline material roughness-related factor on the calculated diameter. Concerning the latter, it is suggested that a Darcy–Weisbach roughness height of 0.045 mm better corresponds to a Manning factor of 0.009 than higher Manning values previously proposed in literature. Comparison with the actual diameter of the Weyburn pipeline confirms the accuracy of the proposed equations. Comparison with other existing CO2 pipelines (without pressure information) indicate that the pipelines are designed for lower pressure gradients than 25 Pa/m or for (future) higher flow rates. The proposed Manning equation is implemented in an economic least-cost route planner in order to obtain the best economic solution for pipeline trajectory and corresponding diameter.  相似文献   

6.
The oxyfuel process is one of the most promising options to capture CO2 from coal fired power plants. The combustion takes place in an atmosphere of almost pure oxygen, delivered from an air separation unit (ASU), and recirculated flue gas. This provides a flue gas containing 80–90 vol% CO2 on a dry basis. Impurities are caused by the purity of the oxygen from the ASU, the combustion process and air ingress. Via liquefaction a CO2 stream with purity in the range from 85 to 99.5 vol% can be separated and stored geologically. Impurities like O2, NOX, SOX, and CO may negatively influence the transport infrastructure or the geological storage site by causing geochemical reactions. Therefore the maximum acceptable concentrations of the impurities in the separated CO2 stream must be defined regarding the requirements from transportation and storage. The main objective of the research project COORAL therefore is to define the required CO2 purity for capture and storage.  相似文献   

7.
Ultrasonic experiments were undertaken on CO2 flooded sandstone core samples, both synthetic sandstones and core plugs from the CRC1 CO2 injection well in the Otway Basin, Victoria, South Eastern. Australia. The aim of these laboratory tests was to investigate the effects of CO2 as a pore fluid on the seismo-acoustic response of the sandstone and ultimately to provide an indication of the sensitivity of time-lapse seismic imaging of the eventual CO2/CH4 plume in the Otway, Waarre C formation.The synthetic sandstones were manufactured using both a proprietary calcium in situ precipitation (CIPS) process and a silica cementing technique. Samples were tested in a computer controlled triaxial pressure cell where pore pressures can be controlled independently of the confining pressures. The pressure cell is equipped with ultrasonic transducers housed in the loading platens. Consequently, effective pressures equivalent to those expected in the reservoir can be applied while ultrasonic testing is undertaken. Both compressional, P and shear waves, S were recorded via a digital oscilloscope at a range of effective pressure steps. Pore pressures were varied from 4 MPa to 17 MPa to represent both the gaseous and liquid phase regions of the CO2 phase diagram. Similar experiments were conducted on core plugs from the Waarre C reservoir horizon obtained from the CRC1 injection well, but with an intervening brine-saturated step and in some cases with a CO2/CH4 mix of 80%/20% molar fraction which is representative of the field situation. However, the pore pressure in these experiments was held at 4 MPa. Finally, acoustic impedances and reflection coefficients were calculated for the reservoir using Gassmann theory and the implications for imaging the CO2 plume is discussed.  相似文献   

8.
CO2 storage capacity estimation: Methodology and gaps   总被引:3,自引:0,他引:3  
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales—in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers.  相似文献   

9.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

10.
Mesoporous MCM-48 silica was synthesized using a cationic-neutral surfactant mixture as the structure-directing template and rice husk ash (RHA) as the silica source. The MCM-48 samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 physisorption and SEM. X-ray diffraction pattern of the resulting MCM-48 revealed typical pattern of cubic Ia3d mesophase. BET results showed the MCM-48 to have a surface area of 1024 m2/g and FT-IR revealed a silanol functional group at about 3460 cm−1. Breakthrough experiments in the presence of MCM-48 were also carried out to test the material's CO2 adsorption capacity. The breakthrough time for CO2 was found to decrease as the temperature increased from 298 K to 348 K. The steep slopes observed shows the CO2 adsorption occurred very quickly, with only a minimal mass transfer effect and very fast kinetics. In addition, amine grafted MCM-48, APTS-MCM-48 (RHA), was prepared with the 3-aminopropyltriethoxysilane (APTS) to investigate the effect of amine functional group in CO2 separation. An order of magnitude higher CO2 adsorption capacity was obtained in the presence of APTS-MCM-48 (RHA) compared to that with MCM-48 (RHA). These results suggest that MCM-48 synthesized from rice husk ash could be usefully applied for CO2 removal.  相似文献   

11.
This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria that represented approximately 60% to 90% of the total cell number, with Proteobacteria and Firmicutes as the most abundant phyla comprising up to 47% and 45% of the entire population, respectively. Both the total cell counts as well as the counts of the specific physiological groups revealed quantitative and qualitative changes after CO2 arrival. Our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these atypical conditions.  相似文献   

12.
Post-combustion CO2 capture remains one of the most-challenging issue to lower CO2 emissions of existing power plants or heavy industry installations because of strong economy and energy efficiency aspects. The major issue comes from CO2 dilution (4% for NGCC and 14% for PC) and the high flow rates to be treated. Furthermore, CO2 purity has to be higher than 95% with recovery at 90%, to match the transportation/injection requirements.The MEA absorption process remains the reference today but its energy consumption (about 3 MJ/kgCO2) and the amine consumption are still challenging drawbacks.The interest of CO2 capture by indirect TSA (Temperature Swing Adsorption) was demonstrated experimentally in a previous work. The aim of this paper is to present the results of a numerical parametric study. Two main parameters are explored: the desorption temperature (100–200 °C) and the purge flow rate (0.1–0.5 Ndm3 min−1). Four performance indicators are evaluated: CO2 purity, recovery, productivity and specific energy consumption.Results show that purity above 95% can be achieved. Keeping the 95% target, it is possible to achieve recovery at 81% with productivity at 57.7 gCO2/kgads h and a specific energy consumption of 3.23 MJ/kgCO2, which is less than for the reference MEA process.Comparison with other adsorption processes exhibits that this process has good potential especially since some improvements are still expected from further research.  相似文献   

13.
CO2 capture and storage has gained widespread attention as an option for reducing greenhouse gas emissions. Chemical absorption and stripping of CO2 with hot potassium carbonate (K2CO3) solutions has been used in the past, however potassium carbonate solutions have a low CO2 absorption efficiency. Various techniques can be used to improve the absorption efficiency of this system with one option being the addition of promoters to the solvent and another option being an improvement in the mass transfer efficiency of the equipment. This study has focused on improving the efficiency of the packed column by replacing traditional packings with newer types of packing which have been shown to have enhanced mass transfer performance. Three different packings (Super Mini Rings (SMRs), Pall Rings and Mellapak) have been studied under atmospheric conditions in a laboratory scale column for CO2 absorption using a 30 wt% K2CO3 solution. It was found that SMR packing resulted in a mass transfer coefficient approximately 20% and 30% higher than that of Mellapak and Pall Rings, respectively. Therefore, the height of packed column with SMR packing would be substantially lower than with Pall Rings or Mellapak. Meanwhile, the pressure drop using SMR was comparable to other packings while the gas flooding velocity was higher when the liquid load was above 25 kg m−2 s−1. Correlations for predicting flooding gas velocities and pressure drop were fitted to the experimental data, allowing the relevant parameters to be estimated for use in later design.  相似文献   

14.
Adsorption is one of the most promising technologies for reducing CO2 emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600–900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N2, −196 °C; CO2, 0 °C), and tested for CO2 adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO2 capture capacities. The carbon-based adsorbent that presented the maximum CO2 capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm3 g−1), thus confirming that only pores of less than 1 nm are effective for CO2 adsorption at atmospheric pressure.  相似文献   

15.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

16.
Accurate experimental data on the thermo-physical properties of CO2-mixtures are pre-requisites for development of more accurate models and hence, more precise design of CO2 capture and storage (CCS) processes. A literature survey was conducted on both the available experimental data and the theoretical models associated with the transport properties of CO2-mixtures within the operation windows of CCS. Gaps were identified between the available knowledge and requirements of the system design and operation. For the experimental gas-phase measurements, there are no available data about any transport properties of CO2/H2S, CO2/COS and CO2/NH3; and except for CO2/H2O(/NaCl) and CO2/amine/H2O mixtures, there are no available measurements regarding the transport properties of any liquid-phase mixtures. In the prediction of gas-phase viscosities using Chapman–Enskog theory, deviations are typically <2% at atmospheric pressure and moderate temperatures. The deviations increase with increasing temperatures and pressures. Using both the Rigorous Kinetic Theory (RKT) and empirical models in the prediction of gas-phase thermal conductivities, typical deviations are 2.2–9%. Comparison of popular empirical models for estimation of gas-phase diffusion coefficients with newer experimental data for CO2/H2O shows deviations of up to 20%. For many mixtures relevant for CCS, the diffusion coefficient models based on the RKT show predictions within the experimental uncertainty. Typical reported deviations of the CO2/H2O system using empirical models are below 3% for the viscosity and the thermal conductivity and between 5 and 20% for the diffusion coefficients. The research community knows little about the effect of other impurities in liquid CO2 than water, and this is an important area to focus in future work.  相似文献   

17.
The objective of this study is to investigate the potential process for the removal of carbon dioxide (CO2) from flue gas using fundamental membrane contactor, which is a membrane gas absorption (MGA) system. The experiments consisted of microporous polyvinylidenefluoride (PVDF) flat sheet membrane with 0.1 μm (as module I) and 0.45 μm (as module II) pore size. 2-Amino-2-methyl-1-propanol (AMP) solution was employed as the liquid absorbent. The effect of AMP concentration was studied with variation in the range 1–5 M. In addition, the experiments were carried out with 10%, 20%, 30% and 40% gas ratio of CO2 to N2 and pure CO2 as well. Through contact angle measurement, membranes for module I and module II were obtained with CA values of around 130.25° and 127.77°, respectively. The mass transfer coefficients for module II are lower than those of module I for 1–5 M of AMP. Furthermore, the increase in CO2 concentration in the feed gas stream enhanced the CO2 flux as the driving force of the system was increased in sequence from 1 M to 5 M of AMP. However, after the particular percentage (40%) of CO2 inlet concentration, the CO2 fluxes seem saturated. The combination of AMP as liquid absorbent and PVDF microporous membrane in MGA system has shown the potential to remove the CO2 from flue gas. In addition, the higher AMP concentration gave higher mass transfer coefficient at low liquid flow rates.  相似文献   

18.
With thermogravimetric apparatus (TGA), X-ray diffraction (XRD) and barium sulfate gravimetric methods, the carbonation reactivities of K2CO3 and K2CO3/Al2O3 in the simulated flue gases with SO2 are investigated and the reaction equations are inferred. Results show that there are KHCO3 and K2SO3 generated. The generation K2SO3 reduces the utilization ratio of the sorbent. H2O may accelerates the sulfation reaction of AR K2CO3 as K4H2(CO3)3·1.5H2O is generated in the reaction among K2CO3, SO2 and H2O. K2SO3 is directly generated from sulfation reaction of K2CO3/Al2O3, because there are K2CO3·1.5H2O and K2SO3 generated in the reaction among K2CO3/Al2O3, SO2 and H2O. K2CO3·1.5H2O does not react with SO2, and K2CO3·1.5H2O/Al2O3 reacts with SO2 slowly. Compare with the reaction process without H2O pretreatment, the reaction rates of KAl30 increased after H2O pretreatment and the failure ratio is about a half of that without H2O pretreatment. So, K2CO3/Al2O3 shows good carbonation and anti-sulfation characteristic after H2O pretreatment.  相似文献   

19.
Numerical modelling of multiphase flow is an essential tool to ensure the viability of long-term and safe CO2 storage in geological formations. Uncertainties arising from the heterogeneity of the formation and lack of knowledge of formation properties need to be assessed in order to create a model that can reproduce the data available from monitoring. In this study, we investigated the impact of unknown spatial variability in the petrophysical properties within a sandy channel facies of a fluviatile storage formation using stochastic methods in a Monte Carlo approach. The stochastic method has been applied to the Ketzin test site (CO2SINK), and demonstrates that the deterministic homogeneous model satisfactorily predicts the first CO2 arrival time at the Ketzin site. The equivalent permeability was adjusted to the injection pressure and is in good agreement with the hydraulic test. It has been shown that with increasing small-scale heterogeneity, the sharpness of the CO2 front decreases and a greater volume of the reservoir is affected, which is also seen in an increased amount of dissolved CO2. Increased anisotropy creates fingering effects, which result in higher probabilities for earlier arrival times. Generally, injectivity decreases with increasing heterogeneity.  相似文献   

20.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号