首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxy-fuel combustion systems have been under development to reduce CO2 emissions from coal-fired power plants. In oxy-fuel combustion system, Hg in the flue gas causes corrosion in CO2 purification and compression units. Also, SO3 in the flue gas corrodes the equipment and ducts of oxy-fuel combustion system. Therefore, Hg and SO3 need to be removed.Babcock-Hitachi conducted tests using a 1.5 MWth Combustion & Air Quality Control System (AQCS) test facility which consists of oxygen supply unit, furnace, Selective Catalytic Reduction (SCR) catalyst, Clean Energy Recuperator (CER), Dry Electrostatic Precipitator (DESP), flue gas recirculation system, Wet Flue Gas Desulfurization (WFGD), and CO2 Compression and Purification Unit (CPU). In both cases of air and oxy-fuel combustion, the Hg removal across the DESP could be improved, and SO3 concentration at the DESP outlet could be reduced to less than 1 ppm by installing a CER upstream of the DESP and reducing the gas temperature at the DESP inlet. Hg was not dissolved in the drain recovered from CO2 compressor, and may be adsorbed at an inner part of CO2 compressor. This indicated that Hg needs to be removed at a location upstream of the CO2 compressor to prevent corrosion of the compressor.  相似文献   

2.
Flue gas purification is a necessary method to avoid emission of sour gases like SOx and NOx into the environment. Another important aspect is the zero CO2 emission from coal-fired power plants. Oxyfuel technology is one of the processes to reach this goal. LINDE KCA Dresden in cooperation with Vattenfall Europe is operating a pilot plant producing liquefied CO2. Product specification and material requirements make flue gas purification for the removal of SOx and NOx unavoidable. The new oxyfuel technologies offer new process conditions for flue gas purification which are not available at atmospheric conditions.At Linde laboratories, catalytic and non-catalytic DeNOx and DeSOx processes have been screened for oxyfuel application. After first feasibility studies, laboratory experiments and economic evaluations, it was decided to develop a process based on wet scrubber systems to remove NOx from flue gas, simultaneously producing ammonia nitrites which can be thermally decomposed into nitrogen in a second step. After demonstration of the single process steps on laboratory scale, a pilot scrubber was erected and commissioned in 2010 at Schwarze Pumpe Oxyfuel Pilot Plant. In September 2010, the successful completion of the pilot tests demonstrated the NOx removal efficiency of this technology. The data from the pilot plant tests have been used to finalise a kinetic model describing the NOx absorption behaviour regarding NOx removal rate and nitrite selectivity for demonstration of plant scale up. This DeNOx-process is now marketed under the name “LICONOX”.  相似文献   

3.
The oxyfuel process is one of the most promising options to capture CO2 from coal fired power plants. The combustion takes place in an atmosphere of almost pure oxygen, delivered from an air separation unit (ASU), and recirculated flue gas. This provides a flue gas containing 80–90 vol% CO2 on a dry basis. Impurities are caused by the purity of the oxygen from the ASU, the combustion process and air ingress. Via liquefaction a CO2 stream with purity in the range from 85 to 99.5 vol% can be separated and stored geologically. Impurities like O2, NOX, SOX, and CO may negatively influence the transport infrastructure or the geological storage site by causing geochemical reactions. Therefore the maximum acceptable concentrations of the impurities in the separated CO2 stream must be defined regarding the requirements from transportation and storage. The main objective of the research project COORAL therefore is to define the required CO2 purity for capture and storage.  相似文献   

4.
The goal of this paper is to find methodologies for removing a selection of impurities (H2O, O2, Ar, N2, SOx and NOx) from CO2 present in the flue gas of two oxy-combustion power plants fired with either natural gas (467 MW) or pulverized fuel (596 MW). The resulting purified stream, containing mainly CO2, is assumed to be stored in an aquifer or utilized for enhanced oil recovery (EOR) purposes. Focus has been given to power cycle efficiency i.e.: work and heat requirements for the purification process, CO2 purity and recovery factor (kg of CO2 that is sent to storage per kg of CO2 in the flue gas). Two different methodologies (here called Case I and Case II) for flue gas purification have been developed, both based on phase separation using simple flash units (Case I) or a distillation column (Case II). In both cases purified flue gas is liquefied and its pressure brought to 110 atm prior to storage.Case I: A simple flue gas separation takes place by means of two flash units integrated in the CO2 compression process. Heat in the process is removed by evaporating the purified liquid CO2 streams coming out from both flashes. Case I shows a good performance when dealing with flue gases with low concentration of impurities. CO2 fraction after purification is over 96% with a CO2 recovery factor of 96.2% for the NG-fired flue gas and 88.1% for the PF-fired flue gas. Impurities removal together with flue gas compression and liquefaction reduces power plant output of 4.8% for the NG-fired flue gas and 11.6% for the PF-fired flue gas. The total amount of work requirement per kg stored CO2 is 453 kJ for the NG-fired flue gas and 586 kJ for the PF-fired flue gas.Case II: Impurities are removed from the flue gas in a distillation column. Two refrigeration loops (ethane and propane) have been used in order to partially liquefy the flue gas and for heat removal from a partial condenser. Case II can remove higher amounts of impurities than Case I. CO2 purity prior to storage is over 99%; CO2 recovery factor is somewhat lower than in Case I: 95.4% for the NG-fired flue gas and 86.9% for the PF-fired flue gas, reduction in the power plant output is similar to Case I.Due to the lower CO2 recovery factor the total amount of work per kg stored CO2 is somewhat higher for Case II: 457 kJ for the NG-fired flue gas and 603 kJ for the PF-fired flue gas.  相似文献   

5.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of sulphur compounds, such as H2S and COS. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and H2S as fuel. The influence of H2S concentration on the gas product distribution and combustion efficiency, sulphur splitting between the fuel reactor (FR) and the air reactor (AR), oxygen carrier deactivation and material agglomeration was investigated in a continuous CLC plant (500 Wth). The oxygen carrier to fuel ratio, ?, was the main operating parameter affecting the CLC system. Complete fuel combustion were reached at 1073 K working at ? values ≥1.5. The presence of H2S did not produce a decrease in the combustion efficiency even when working with a fuel containing 1300 vppm H2S. At these conditions, the great majority of the sulphur fed into the system was released in the gas outlet of the FR as SO2, affecting to the quality of the CO2 produced. Formation of copper sulphide, Cu2S, and the subsequent reactivity loss was only detected working at low values of ?  1.5, although this fact did not produce any agglomeration problem in the fluidized beds. In addition, the oxygen carrier was fully regenerated in a H2S-free environment. It can be concluded that Cu-based oxygen carriers are adequate materials to be used in a CLC process using fuels containing H2S although quality of the CO2 produced is affected.  相似文献   

6.
Carbon dioxide emissions will continue being a major environmental concern due to the fact that coal will remain a major fossil-fuel energy resource for the next few decades. To meet future targets for the reduction of greenhouse gas (GHG) emissions, capture and storage of CO2 is required. Carbon capture and storage technologies that are currently the focus of research centres and industry include: pre-combustion capture, post-combustion capture, and oxy-fuel combustion. This review deals with the oxy-fuel coal combustion process, primarily focusing on pulverised coal (PC) combustion, and its related research and development topics. In addition, research results related to oxy-fuel combustion in a circulating fluidised bed (CFB) will be briefly dealt with.During oxy-fuel combustion, a combination of oxygen, with a purity of more than 95 vol.%, and recycled flue gas (RFG) referred to as oxidant is used for combusting the fuel producing a gas consisting of mainly CO2 and water vapour, which after purification and compression, is ready for storage. The high oxygen demand is supplied by a cryogenic air separation process, which is the only commercially available mature technology. The separation of oxygen from air as well as the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be decreased by 8–12% points, corresponding to a 21–35% increase in fuel consumption. Alternatively, ion transport membranes (ITMs) are proposed for oxygen separation, which might be more energy efficient. However, since ITMs are far away from becoming a mature technology, it is widely expected that cryogenic air separation will be the selected technology in the near future. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the boiler require a moderation of the temperatures in the combustion zone and in the heat-transfer sections. This moderation in temperature is accomplished by means of recycled flue gas. The interdependencies between the fuel properties, the amount and temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are reviewed.The different gas atmosphere resulting from oxy-fuel combustion gives rise to various questions related to firing, in particular, with respect to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or its resulting deposits. In this review, detailed nitrogen and sulphur chemistry was investigated in a laboratory-scale facility under oxy-fuel combustion conditions. Oxidant staging succeeded in reducing NO formation with effectiveness comparable to that typically observed in conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was measured, as expected. However, the H2S concentration in the combustion atmosphere in the near-flame zone increased as well. Further results were obtained in a pilot-scale test facility, whereby acid dew points were measured and deposition probes were exposed to the combustion environment. Slagging, fouling and corrosion issues have so far been addressed via short-term exposure and require further investigation.Modelling of PC combustion processes by computational fluid dynamics (CFD) has become state-of-the-art for conventional air combustion. Nevertheless, the application of these models for oxy-fuel combustion conditions needs adaptation since the combustion chemistry and radiative heat transfer is altered due to the different combustion gas atmosphere.CFB technology can be considered mature for conventional air combustion. In addition to its inherent advantages like good environmental performance and fuel flexibility, it offers the possibility of additional heat exchanger arrangements in the solid recirculation system, i.e. the ability to control combustion temperatures despite relatively low flue gas recycle ratios even when combusting in the presence of high oxygen concentrations.  相似文献   

7.
Chemical looping combustion (CLC) is a process in which oxygen required for combustion of a fuel is supplied by the metal oxide. Metal oxide plays the role of an oxygen carrier by providing oxygen for combustion when being reduced and is then re-oxidized by air in a separate reactor. Combustion is thus without any direct contact between air and fuel: as a consequence flue gas does not contain nitrogen of air which simplifies flue gas treatment prior to sequestration. In the present study, biogas combustion was analyzed in a chemical looping combustion fluidized bed reactor. NiAl0.44O1.67 and Cu0.95Fe1.05AlO4 metal oxide particles were used as oxygen carriers. The experiments have shown the feasibility of biogas combustion in chemical looping combustion: CH4 of the biogas was completely converted to CO2 and H2O with a small fraction of CO and H2. The outlet flue gas distribution profile was not affected by ageing during the cycles of reduction and oxidation, indicating the chemical stability of the oxygen carriers. There was limited formation of carbon on the oxygen carriers during reduction.  相似文献   

8.
Significant differences exist in the flue gas composition in hot recycle Oxyfuel conditions as e.g. the high CO2 partial pressure (>90 vol%, dry), the very high SO2 concentration and the high water content (approx. 30 vol%). Therefore certain design and operation criteria have to be observed for the flue gas desulphurization with forced oxidation under Oxyfuel combustion conditions. Several performance tests have been executed at the 30 MWth Oxyfuel pilot plant in Schwarze Pumpe to evaluate the main performance parameters and to assess the influence of the major operation parameters. The results show that there are no fundamental problems for the operation of the flue gas desulphurization unit under Oxyfuel combustion conditions. High removal rates could be reached and no negative impact of the high CO2 partial pressure was observed under the tested operating conditions. No major differences in the gypsum quality have been observed between air firing and Oxyfuel conditions.  相似文献   

9.
Following the feasibility study of sour compression process as a novel purification method of producing NOx-free, SO2-free oxyfuel-derived CO2 using actual fluegas, in this paper, we present the study of the individual reactions taking place in the process in a controlled environment. We have previously showed that an increase of NO/NO2 concentration in the inlet stream is beneficial for SO2 removal as NO2 promotes SO2 oxidation and the further removal as liquid acid. In this study we show that the reaction SO2 + NO2  SO3 + NO does not take place significantly in the absence of liquid water at a range of conditions relevant to the sour compression process. When liquid water is present, SO2 is oxidised by NO2 regenerating NO with the rate of conversion of SO2 being dependent on the acid concentration in the liquid. The formation of small liquid droplets where very low levels of pH (?0) can be reached is shown to be of great importance to the SO2 + NO2 conversion process.  相似文献   

10.
Oxycombustion is being considered as a promising solution to carbon capture and sequestration. Standard sampling and measurement methods may or may not be valid under oxycombustion conditions because the flue gas differs significantly from that of conventional air-blown coal combustion.Bench-scale tests were conducted to evaluate the measurement validity of continuous mercury monitors (CMMs), with and without a flue gas preconditioning unit, in a simulated oxycombustion flue gas with varied CO2 concentrations. Tests also included mercury capture with activated carbon in typical oxyfuel combustion flue gas. Research data indicated that highly concentrated CO2 streams affect the accuracy of the mass flow rate and the subsequent gaseous mercury measurement, although this is specific to the type of CMM. Concentrated CO2 streams also induced solid precipitation in the wet-chemistry conversion unit and resulted in a biased measurement of the gas-phase mercury. Flue gas dilution appeared to provide accurate measurement of total gas-phase mercury and be applicable to mercury measurement in highly concentrated CO2 streams, although mercury speciation appeared to be problematic and will require additional modification and validation. Mercury capture with activated carbon under CO2-enriched conditions showed similar performance to typical high-acid coal combustion flue gas.  相似文献   

11.
京津冀地区重点耗煤行业大气污染物排放清单研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究通过京津冀地区各行业的年度煤炭消费量确定火电行业、钢铁行业和焦化行业为重点耗煤行业,以在线监测数据、污染源调查(现场调研、环评、验收)数据、排放因子数据为基础,自下而上建立了2013年京津冀地区重点耗煤行业大气污染物排放清单,分析研究了SO_2、NO_x和PM_(10)的排放量与污染贡献分布情况,掌握了京津冀地区重点耗煤行业大气污染物排放现状,为大气污染物减排提供数据基础。研究表明,2013年京津冀火电、钢铁焦化行业共排放SO_2 72.35万t、NO_x 131.99万t、PM_(10) 30.36万t。  相似文献   

12.
CO2 and SO2 are some of the main polluting gases emitted into atmosphere in combustion processes using fossil fuel for energy production. The former is one of the major contributors to build-up the greenhouse effect implicated in global climate change and the latter produces acid rain. Oxy-fuel combustion is a technology, which consists in burning the fuel with a mix of pure O2 and recirculated CO2. With this technology the CO2 concentration in the flue gas may be enriched up to 95%, becoming possible an easy CO2 recovery. In addition, oxy-fuel combustion in fluidized beds allows in situ desulfurization of combustion gases by supplying calcium based sorbent.In this work, the effect of the principal operation variables affecting the sulfation reaction rate in fluidized bed reactors (temperature, CO2 partial pressure, SO2 concentration and particle size) under typical oxy-fuel combustion conditions have been analyzed in a batch fluidized bed reactor using a limestone as sorbent. It has been observed that sulfur retention can be carried out by direct sulfation of the CaCO3 or by sulfation of the CaO (indirect sulfation) formed by CaCO3 calcination. Direct sulfation and indirect sulfation operating conditions depended on the temperature and CO2 partial pressure. The rate of direct sulfation rose with temperature and the rate of indirect sulfation for long reaction times decreased with temperature. An increase in the CO2 partial pressure had a negative influence on the sulfation conversion reached by the limestone due to a higher temperature was needed to work in conditions of indirect sulfation. Thus, it is expected that the optimum temperature for sulfur retention in oxy-fuel combustion in fluidized bed reactors be about 925–950 °C. Sulfation reaction rate rose with decreasing sorbent particle size and increasing SO2 concentration.  相似文献   

13.
Chemical-looping combustion (CLC) has been suggested as an energy efficient method for the capture of carbon dioxide from combustion. Thermodynamics and kinetics of CaSO4 reduction with coal via gasification intermediate in a CLC process were discussed in the paper, with respect to the CO2 generating efficiency, the environmental factor and the surface morphology of oxygen carrier. Tests on the combined process of coal gasification and CaSO4 reduction with coal syngas were conducted in a batch fluidized bed reactor at different reaction temperatures and with different gasification intermediates. The products were characterized by gas chromatograph, gas analyzers and scanning electron microscope. And the results showed that an increase in the reaction temperature aggravated the SO2 emission. The CO2 generating efficiency also increased with the temperature, but it decreased when the temperature exceeded 950 °C due to the sintering of oxygen carrier particles. The use of CO2 as gasification intermediate in the fuel reactor had a positive effect on the sintering-resistant of oxygen carrier particles. However, increasing the steam/CO2 ratio in gasification intermediate evidently enhanced CO2 generating efficiency and reduced SO2 environmental impact.  相似文献   

14.
The membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture.  相似文献   

15.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

16.
Ash deposition is still an unresolved problem when retrofitting existing air-fired coal power plants to oxy-fuel combustion. Experimental data are quite necessary for mechanism validation and model development. This work was designed to obtain laboratory combustor data on ash and deposits from oxy-coal combustion, and to explore the effects of oxy-firing on their formation. Two bituminous coals (Utah coal and Illinois coal) and one sub-bituminous coal (PRB coal) were burned on a down-fired combustor under both oxy- and air-firing. Two oxy-fired cases, i.e., 27 vol% O2/73 vol% CO2 and 32 vol% O2/68 vol% CO2, were selected to match the radiation flux and the adiabatic flame temperature of air combustion, respectively. Once-through CO2 was used to simulate fully cleaned recycled flue gas. The flue gas excess oxygen was fixed at 3 vol%. For each case, both size-segregated fly ash and bulk fly ash samples were obtained. Simultaneously, ash deposits were collected on an especially designed un-cooled deposition probe. Ash particle size distributions and chemical composition of all samples were characterized. Data showed that oxy-firing had insignificant impacts on the tri-modal ash particle size distributions and composition size distributions in the size range studied. Bulk ash compositions also showed no significant differences between oxy- and air-firing, except for slightly higher sulfur contents in some oxy-fired ashes. The oxy-fired deposits were thicker than those from air-firing, suggesting enhanced ash deposition rates in oxy-firing. Oxy-firing also had apparent impacts on the deposit composition, especially for those components (e.g., CaO, Fe2O3, SO3, etc.) that could contribute significantly to ash deposition. Based on these results, aerodynamic changes in gas flow and changes in combustion temperature seemed more important than chemical changes of ash particles in determining deposit behavior during oxy-coal combustion.  相似文献   

17.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of light hydrocarbons. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and light hydrocarbons (LHC) (C2H6 and C3H8) as fuel. The effect on combustion efficiency of the fuel reactor temperature, solid circulation flow rate and gas composition was studied in a continuous CLC plant (500 Wth). Full combustions were reached at 1073 and 1153 K working at oxygen to fuel ratios, ? higher than 1.5 and 1.2 respectively. Unburnt hydrocarbons were never detected at any experimental conditions at the fuel reactor outlet. Carbon formation can be avoided working at 1153 K or at ? values higher than 1.5 at 1073 K. After 30 h of continuous operation, the oxygen carrier exhibited an adequate behavior regarding attrition and agglomeration. It can be concluded that no special measures should be taken in a CLC process with Cu-based OC with respect to the presence of LHC in the fuel gas.  相似文献   

18.
Effect of oxygenated liquid additives on the urea based SNCR process   总被引:1,自引:0,他引:1  
An experimental investigation was performed to study the effect of oxygenated liquid additives, H2O2, C2H5OH, C2H4(OH)2 and C3H5(OH)3 on NOx removal from flue gases by the selective non-catalytic reduction (SNCR) process using urea as a reducing agent. Experiments were performed with a 150 kW pilot scale reactor in which a simulated flue gas was generated by the combustion of methane operating with 6% excess oxygen in flue gases. The desired levels of initial NOx (500 ppm) were achieved by doping the fuel gas with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 800 to 1200 °C for the investigation of the effects of the process additives on the performance of aqueous urea DeNOx. With H2O2 addition a downward shift of 150 °C in the peak reduction temperature from 1130 to 980 °C was observed during the experimentation, however, the peak reduction efficiency was reduced from 81 to 63% when no additive was used. The gradual addition of C2H5OH up to a molar ratio of 2.0 further impairs the peak NOx reduction efficiency by reducing it to 50% but this is accompanied by a downward shift of 180 °C in the peak reduction temperature. Further exploration using C2H4(OH)2 suggested that a 50% reduction could be attained for all the temperatures higher than 940 °C. The use of C3H5(OH)3 as a secondary additive has a significant effect on the peak reduction efficiency that decreased to 40% the reductions were achievable at a much lower temperature of 800 °C showing a downward shift of 330 °C.  相似文献   

19.
At the district heating plant of Kalmar, Sweden an on-line unit for production of granulated wood ash for nutrient recycling on forest soils is being applied. Currently, the granules are dried by hot air from an oil-fired burner. The objective of this work was to investigate how drying by flue gas affects the hardening of granules, or impacts their chemical composition and properties. Ninety-six granule samples were treated by flue gas from natural gas combustion in a laboratory pilot scale flue gas generator. CO2, CO, O2, C3H8 and NO concentrations were varied during the experiment. Additionally, some samples were treated by flue gas from combustion of sawdust at the heating plant in Kalmar. Drying by flue gases did not affect the chemical composition of granules, but minor effects were seen in their mineralogy. The carbonate content was slightly higher in granules treated with flue gas from natural gas combustion compared to the granules dried by hot air only, when measured by wet chemical methods. Results from XRD analysis imply that the calcite content is higher and the portlandite and arcanite content slightly less in granules treated with flue gas from sawdust combustion compared to the granules dried by hot air only. The results from this investigation showed no negative effects on ash granule composition or physical structure by the use of a flue as a drying medium.  相似文献   

20.
长沙市空气自动站周边区域大气污染物排放源清单   总被引:1,自引:0,他引:1       下载免费PDF全文
以长沙市空气自动站周边3 km为研究对象,基于统计年鉴和实地调查,获得了该地区2015年储存运输源、废弃物处理源、工艺过程源、化石燃料固定燃烧源、农业源、生物质燃烧源、扬尘源、移动源8个源类的活动水平数据。以大气污染物排放源清单编制技术指南为依据,建立了2015年长沙市空气自动站周边3 km区域NH_3、NO_x、PM_(10)、PM_(2.5)、SO_2、VOCs等6项污染物的源排放清单。结果表明,2015年长沙空气自动站周边3 km内,8类大气污染源排放的NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs总量分别为53.65t、4 899.35t、1 846.09t、6 257.75t、989.49t、4 383.31t。NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs排放量最大的源分别是农业源、移动源、扬尘源、扬尘源、化石燃料固定燃烧源和移动源,贡献率分别为98.45%、84.24%、60.82%、85.90%、97.33%、49.88%。优化道路交通、减少燃煤、减少建筑工地扬尘排放可促进长沙市空气自动站周边空气质量改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号