首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors.  相似文献   

2.
A summary is given of research within the field of application technology for crop protection products for the past 10 years in The Netherlands. Results are presented for greenhouse, orchard, nursery tree and arable field spraying for the typical Dutch situation. Research predominantly focussed on the quantification of spray deposition in crop canopy and the emissions into the environment, especially spray drift. The risk of spray drift is related to defined distances and dimensions of the surface water adjacent to a sprayed field. Spray deposition and spray drift research was setup in order to identify and quantify drift-reducing technologies. Results are presented for cross-flow sprayers, tunnel sprayers and air-assisted field sprayers. For field crop spraying with a boom sprayer the effect of nozzle type on spray deposition in crop canopy and spray drift is highlighted both with a modelling approach as based on field experiments. The use of spray drift data in regulation is discussed. A relation between spray deposition and biological efficacy is outlined for drift-reducing spray techniques. The effect of spray drift-reducing technologies in combination with crop- and spray-free buffer zones is outlined. It is concluded that spray technology plays an important role to minimise spray- and crop-free buffer zones, and to maintain biological efficacy and acceptable levels of ecotoxicological risk in the surface water.  相似文献   

3.
This paper presents results from field studies carried out during the 1993-1998 Australian cotton (Gossypium hirsutum L.) seasons to monitor off-target droplet movement of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) insecticide applied to a commercial cotton crop. Averaged over a wide range of conditions, off-target deposition 500 m downwind of the field boundary was approximately 2% of the field-applied rate with oil-based applications and 1% with water-based applications. Mean airborne drift values recorded 100 m downwind of a single flight line were a third as much with water-based application compared with oil-based application. Calculations using a Gaussian diffusion model and the U.S. Spray Drift Task Force AgDRIFT model produced downwind drift profiles that compared favorably with experimental data. Both models and data indicate that by adopting large droplet placement (LDP) application methods and incorporating crop buffer distances, spray drift can be effectively managed.  相似文献   

4.
Mountain pine beetles, Dendroctonus ponderosae (Hopkins) attack and can ultimately kill individuals and groups of pine trees, specifically lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.). In British Columbia, beetle attack has increased from 164 000 ha in 1999 to over 13 million ha in 2008. Mitigation efforts can play a key role in addressing the impact beetle infestations can have on the forested landscape. In this research, the impact of mitigation on a mountain pine beetle infestation is examined within a network of 28 research plots where sanitation harvesting was completed (10 mitigated plots) and not completed (18 unmitigated plots). Three forest stand level modelling scenarios which predict the number of attacked trees, based on current infestation within the plots, were utilized to compare the differences between mitigated and non-mitigated plots. In the first scenario in the non-mitigated plots, 125 trees were infested after 10 years, while in the mitigated plots no trees were infested in the same time period. The second scenario indicates the level of mitigation required to suppress beetle infestations where the proportion of mitigated trees was calculated for each plot by counting the residual attack and the number of mitigated trees. The average mitigation rate over all plots of 43% (range 0–100%) is not sufficient to provide control. In the non-mitigated plots, the average population expansion rate was 5 (range of 0–18) which requires a detection accuracy of 74% to reliably detect infestation. The third scenario estimated the length of time required for ongoing detection, monitoring, and mitigation to bring an infestation under control. If mitigation efforts were maintained at the current rate of 43%, the beetle population would not be adequately controlled. However, when aided by continued detection and monitoring of attacked trees, mitigation rates greater than 50% are sufficient to control infestations, especially with persistent implementation, aided by continued detection and monitoring of infested trees.  相似文献   

5.
Drift from pesticide spray application can result in contamination of nontarget environments such as surface waters. Azinphos-methyl (AZI) and endosulfan (END) deposition in containers of water was studied in fruit orchards in the Western Cape, South Africa. Additionally, attention was given to the contamination in farm streams, as well as to the resulting contamination of the subsequent main channel (Lourens River) approx. 25 km downstream of the tributary stream inlets. Spray deposit decreased with increasing distance downwind and ranged from 4.7 mg m(-2) within the target area to 0.2 mg m(-2) at 15 m downwind (AZI). Measured in-stream concentrations of both pesticides compared well with theoretical values calculated from deposition data for the respective distances. Furthermore, they were in the range of values predicted by an exposure assessment based on 95th-percentile values for basic drift deposition (German Federal Biological Research Centre for Agriculture and Forestry [BBA] and USEPA). Pesticide deposition in the tributaries was followed by a measurable increase of contamination in the Lourens River. Mortality of midges (Chironomus spp.) exposed for 24 h to samples obtained from the AZI trials decreased with decreasing concentrations (estimated LC50 from field samples = 10 microg L(-1) AZI; lethal distance: LD50 = 13 m). Mortality in the tributary samples averaged 11% (0.5-1.7 microg L(-1) AZI), while no mortality was discernible in the Lourens River samples (0.041 microg L(-1)). The sublethal endpoint failure to form tubes from the glass beads provided was significantly increased at all sites in comparison with the control (analysis of variance [ANOVA], Fisher's protected least significant difference [PLSD], p < 0.01).  相似文献   

6.
The objective of this study was to assess the effect of compost application on soil respiration and dissolved organic carbon (DOC) output of nutrient-depleted forest soils. An amount of 6.3 kg m(-2) mature compost was applied to the forest floor of European beech (Fagus sylvatica L.), Norway spruce (Picea abies Karst.), and Scots pine (Pinus sylvestris L.) stands at Soiling and Unterlüss, Germany. Cumulative soil respiration significantly increased by 499 g C m(-2) in the spruce stand at Unterlüss and by 274 g C m(-2) in the beech stand at Soiling following compost application whereas soil respiration of the other four stands was not affected. The increases in soil respiration of the two stands were explained by improved microbial decomposition of soil organic matter. The DOC concentrations and fluxes in throughfall and seepage water at 10- and 100-cm depths were determined from August 1997 to March 2000. In the control plots, cumulative DOC outputs at 10 cm ranged between 57 and 95 g C m(-2), with the highest rates in the pine stands. Compost treatment significantly increased cumulative DOC outputs by 31 to 69 g C m(-2) at 10 cm and by 0.3 to 6.6 g C m(-2) at 100 cm. The mineral soils between the 10- and 100-cm depths acted as significant sinks for DOC, as shown by much lower cumulative outputs at 100 cm of 3 to 11 g C m(-2) in the control and 6 to 16 g C m(-2) in the compost plots. Our results suggest that a single, moderate application of mature compost to nutrient-depleted forest soils has little effect on C losses to the atmosphere and ground water.  相似文献   

7.
There are a wide variety of different herbicide treatment methods used to remove single trees. Each method (cut-stump, basal, foliar) has a unique amount of off-target disturbance that should be considered in selecting a treatment for use in management. We quantified the amount of off-target deposition that resulted from four conventional herbicide application methods: 1) basal, 2) cut-stump, 3) high-volume, hydraulic foliar, and 4) low-volume, backpack foliar. Basal and cut-stump herbicide treatments deposited up to 200 and 4000 times more herbicide (a.i. per unit area) at groundline than the low-volume and high-volume foliar treatments, respectively. On a per tree basis, basal and cut-stump treatments deposited nearly six times more total herbicide than high-volume foliar, and 68 times more than low-volume foliar. All of the herbicide deposited off-target landed within 0.6 m of the basal and cut-stump treatments, 3.7 m with the low-volume foliar, and 7.3 m with high-volume foliar methods. Off-target herbicide deposition resulted in affected areas with killed or damaged vegetation ranging in size from 0.36 m2 (cut stump) to 7.08 m2 (high-volume foliar). Deposition amounts and affected areas were greater with larger trees, compared to smaller ones. We observed that 48% of the total amount of herbicide applied per plot was deposited off-target with cut-stump treatment, compared to only 4% to 11% for the other treatments. We suspect this difference is due to applicator error with the cut-stump treatment, likely related to the type of spray device used to apply the treatment.  相似文献   

8.
Asulam is often applied from the air to control bracken. This herbicide affects other ferns and spray drift could affect their survival. This paper discusses the use of bioassays to assess drift (a) spatially around a single bracken patch, (b) downwind from sprayed areas, and (c) spatially in undulating terrain and with different vegetation cover types. The aims were to develop policies to protect sensitive habitats. It is suggested that “no-spray” buffer zones in excess of 160–180 m are needed to minimise risk. Protection of rare ferns from overstorey vegetation or from steep slopes did not occur. Although less drift was found upwind there was significant damage at the end of the helicopter runs because of errors in switching the sprayer on and off.  相似文献   

9.
10.
ABSTRACT: Effective rainfall is virtually equal to throughfall under most forest canopies. Average throughfall (as measured in trough gauges for a series of rainfall events) increased systematically with distance from tree stems in a young pine plantation. Empirical data suggest that the increase is proportional to the fourth root of distance, but any physical meaning of the relationship is obscure.  相似文献   

11.
Disturbances by insects have considerable effect on the heterogeneity of forested landscapes in North America. Responding to calls for bringing human dimensions of landscape disturbance and heterogeneity into ecological assessments and management strategies, this paper explores linkages between biophysical, socioeconomic, and perceptual aspects of a mountain pine beetle (MPB) (Dendroctonus ponderosae) outbreak in north central Colorado. Findings are presented from surveys conducted with residents of nine Colorado communities and variations in local perceptions of MPB risks and forest management attitudes are compared to indices of tree mortality and amenity characteristics. Findings suggest respondents from lower amenity communities with more recent emphasis on resource extraction and higher tree mortality had significantly higher risk perceptions of some MPB impacts, lower trust in federal forest management, and higher faith in forest industry and specific industry options than those from higher amenity communities with less tree mortality. While not implying these contextual influences fully explain such perceptual dimensions, this paper explores possible implications of heterogeneity across human landscapes for improving the saliency and efficiency of regional forest management and planning.  相似文献   

12.
It is often difficult to measure and predict the impacts of toxic chemicals, such as herbicides, on natural communities. This is especially true under conditions of spray drift when the amount received by the organisms downwind from the sprayer may be at sub-lethal doses. Laboratory experiments are either artificial, or have not been generally carried out over long enough time periods, to be realistic. Field experiments are often difficult because of the high variability inherent in natural populations. Here an intermediate microcosm approach was used, where standardized artificial communities (eight dicotyledons with and without a grass) were tested. The artifical communities included species typical of British woodland margins, hedgerows and field margins; communities with a high conservation interest, yet potentially under threat from spray drift. The microcosms were placed downwind of a sprayer and exposed to one of the following herbicides: glyphosate, mecoprop and MCPA. This approach ensures that the communities were standardized at the start and have been exposed to realistic doses of herbicide. The experiments reported here were carried out for at least three years with exposures to herbicides repeated each year. The effects of differential herbicide exposure downwind of the sprayer were measured on species yield, flowering performance, seed production, seed viability and invasion by new species. Responses were extremely variable, but all species showed some effects in some years. Some patterns emerged. For example, one group of species appeared to be more successful near to the sprayer. This was particularly true of the grass when exposed to MCPA and mecoprop. The performance of most species was reduced under the sprayer, and there was a general recovery with increasing distance downwind. A few species showed increased performance in the intermediate downwind zone (2–4 m) and this may be due to a hormonal effect on growth processes, or an effect of reduced interference from other community members. Generally, there were few effects on seed production or seed viability. An important result was that most effects were confined within an 8 m zone, as there were few significant differences between plants exposed at 8 m and those untreated. Although damaging effects were found in the immediate downwind zone from the sprayer, the restriction of effects to 8 m suggests that a buffer zone of this size would be adequate to protect sensitive habitats from most deleterious impacts on community processes.  相似文献   

13.
An index of sediments less than 0.3 mm stored in the top layer of small streams was estimated by disturbing a fixed area for 2 minutes and catching the resultant sediment drift in downstream traps. The method was used in 24 small northern California streams and was tested by releasing known amounts and sizes of sediments in controlled trails. Field use showed general agreement with an exponential model of decrease in sediment trapped vs. distance. Sites in distrubed reaches (watersheds logged with no streamside buffers or with buffers less than 30 m) had higher indices of stored sediment than control sites. Estimates from controlled trials averaged 7.5 percent higher than actual losses for composite size classes ≤ 0.3 mm, 19.7 percent higher than actual losses for just the ≤ 0.125 mm class, and 15.2 percent for all 14 trials. The method is relatively simple and suitable for remote locations, particularly in studies comparing many small streams.  相似文献   

14.
This study estimated the potential effects of pesticide drift on terrestrial ecosystems outside target areas, for the Dutch situation. A series of field trials was conducted to estimate the effects of drift on different species groups at different distances from a treated plot for different categories of pesticide: herbicides, fungicides and insecticides. Measurements of the pesticide drift deposition resulting from standard agricultural practice were used to model deposition outside the treated area. These data were then combined with national statistics on cropland and pesticide use to assess the ecological effects of pesticide drift for the Netherlands as a whole. Three scenarios were considered: the recent past (1998), the present (2005) and an optimised scenario based on 'best available practice' (2010). In the recent past the impact of herbicide drift on sensitive life stages non-target vascular plants is estimated to have exceeded the 50% effect level on 59% of adjacent linear landscape elements such as ditch banks and hedgerows. For the impact of insecticides and fungicides on non-target insects and fungi this 50% effect figure was 29% and 28% of linear elements, respectively. In the present situation, with (narrow) unsprayed buffer zones and other measures in place, these percentages are down to 41% for herbicides, 21% for insecticides and 14% for fungicides. In the optimised scenario, with a greater buffer width of 2.25m for potatoes (compared to 1.50m in 2005) and 1m for other crops (compared to 0.25 and 0.5m in 2005) and 'best available practice', these percentages can be cut to zero. In natural areas located within farming regions the 10% effect level can be reduced from 31% of such areas (1998) to 0% under conditions of 'best available practice'.  相似文献   

15.
High intensity wildfire due to long-term fire suppression and heavy fuels buildup can render watersheds highly susceptible to wind and water erosion. The 2002 "Gondola" wildfire, located just southeast of Lake Tahoe, NV-CA, was followed 2 wk later by a severe hail and rainfall event that deposited 7.6 to 15.2 mm of precipitation over a 3 to 5 h time period. This resulted in a substantive upland ash and sediment flow with subsequent down-gradient riparian zone deposition. Point measurements and ESRI ArcView were applied to spatially assess source area contributions and the extent of ash and sediment flow deposition in the riparian zone. A deposition mass of 380 Mg of ash and sediment over 0.82 ha and pre-wildfire surface bulk density measurements were used in conjunction with two source area assessments to generate an estimation of 10.1 mm as the average depth of surface material eroded from the upland source area. Compared to previous measurements of erosion during rainfall simulation studies, the erosion of 1800 to 6700 g m(-2) mm(-1) determined from this study was as much as four orders of magnitude larger. Wildfire, followed by the single event documented in this investigation, enhanced soil water repellency and contributed 17 to 67% of the reported 15 to 60 mm ky(-1) of non-glacial, baseline erosion rates occurring in mountainous, granitic terrain sites in the Sierra Nevada. High fuel loads now common to the Lake Tahoe Basin increase the risk that similar erosion events will become more commonplace, potentially contributing to the accelerated degradation of Lake Tahoe's water clarity.  相似文献   

16.
3 are damaged annually by snow and wind, roughly corresponding to a value of US$150 million, and in Europe, the damage amounts to hundreds of millions of US dollars each year. To help to reduce these losses, tools for risk assessment within forest management have been developed. Predictions were developed of the risk of damage from snow and wind to Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and Birch (Betula spp. L.) plots using tree, stand, and site characteristics. The data were obtained from 6756 permanent sample plots within the Swedish National Forest Inventory, which were inventoried twice at five-year intervals between 1983 and 1992. Input data for model development used measurements from the first inventory of tree characteristics for the largest sample tree, stand, and site data, and records of snow and wind damage from the second inventory. Models were developed for three different regions for pine- and spruce-dominated sites, while models for the whole country were developed for birch sites. In general the estimated proportion of damaged plots was highly overestimated (31.7%–56.2%), compared with the observed proportion of 3.4%–11.9%. The models for Norway spruce comprising tree, stand, and site data show the best predictability of damaged plots, with 60.6%–67.6% of plots correctly classified. It is concluded that the models developed can be used to detect sites with a high probability of damage from snow and wind, and thus be used as tools to reduce future damage and costs in practical forestry.  相似文献   

17.
The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.  相似文献   

18.
Throughfall was measured during 1978–79 beneath the canopies of adjacent stands of four major southern pine species, all on identical soil type and topography in the Stephen F. Austin Experimental Forest. Observations from 44 storms in a randomized network of 15, 5.08 cm PVC gages in a 0.4 ha plot of each species showed that throughfall expressed as percent of storm precipitation, is greatest under longleaf pine and least under loblolly pine; throughfall under shortleaf and slash pine did not differ significantly. Generally, through-fall decreased with storm size and intensity, with distance from the nearest tree stem, and is greater during summer half-year (May–October). Canopy drips, apparently accounting for the greater throughfall for the gage position closer to the stems, were more numerous than reported elsewhere. The 5.08 cm PVC gages proved to be acceptable substitutes for standard nonrecording gages in measuring throughfall. A network of 15 such gages was sufficient to sample throughfall data with 90 percent accuracy in each of the four southern pine plantations.  相似文献   

19.
Little information is available concerning the contamination risk caused by forest seedling nurseries to local surface and ground waters compared with agricultural and horticultural production. Leaching of nitrogen (N) and phosphorus (P) through peat growing medium in containers and nutrient uptake of seedlings were monitored in production of silver birch (Betula pendula Roth), Norway spruce [Picea abies (L.) Karst], and Scots pine (Pinus sylvestris L.) seedlings. About half of the applied nutrients (total amount applied = 149 to 260 kg N ha(-1) and 60 to 108 kg P ha(-1)) was premixed into the peat medium, as is usual in Finnish nursery practice, and the other half was applied to seedlings in liquid form with mobile booms. Depending on tree species, 11 to 19% of the applied N was recovered in leachates and 15 to 63% in seedlings. The undiscovered proportion varied from 19 to 71%. The amounts of leached N were 19 to 41 kg ha(-1). Only 5 to 31% of the applied P was recovered in seedlings; 16 to 64% (11 to 56 kg ha(-1)) was found in leachates. Total N and P load to the environment may increase substantially if nutrients applied in liquid fertilization outside container trays are included. Consequently, it is important to determine the sources of nutrient load in container seedling production to mitigate the risk of environment contamination.  相似文献   

20.
Using historical General Land Office record as a reference, this study employed a landscape-scale disturbance and succession model to estimate the future cumulative effects of six alternative management plans on the tree species composition for various physiographic settings for the Mark Twain National Forest in Missouri. The results indicate that over a 200-year horizon, the relative abundance of black oak and pine species groups will decrease and the relative abundance of the white oak species group will increase, regardless of management strategy. General Land Office witness tree records provide a measure of tree species composition in the period from 1800 to 1850, prior to the large-scale influx of European settlers. Compared to the tree species composition described in the General Land Office records, the six contemporary management alternatives considered all would lead to a lower abundance of pine species, a higher abundance of red/black oak species, and a slightly higher abundance of white oak species after 200 years. Impacts of management on tree species composition varied with physiographic settings. The projected relative abundance of pine differed significantly across the five physiographic classes over the first 40 years of the simulation. In the medium term (simulation years 41-100) the projected relative pine abundance differed significantly among only four physiographic classes. In the long term (simulation years 100-200) the projected relative pine abundance differed for only one physiographic class. In contrast, differences among physiographic classes in the relative abundance of black oaks and white oaks increased over time. In general, the expected long-term differences in relative tree species abundance among six proposed alternative management plans are small compared to shifts in tree species composition that have occurred from 1850 to the present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号