首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

2.
ABSTRACT: Evaluation of the applicability and validity of hydrologic simulation models for various cropping systems in different hydrogeologic and soil conditions is needed for a range of spatial scales. We calibrated and tested the ADAPT model for simulating streamflow from 552 to 1,985 km2 watersheds in central Illinois, where more than 79 percent of the land is used for maize‐soybean production and tile drainage is common. Model calibration was performed with a seven year period (1987 through1993) of measured streamflow from one of the watersheds, and model testing was done using independent weather and measured streamflow data from the two neighboring watersheds for the same seven year period. Simulations of annual streamflow were accurate with a coefficient of determination and Willmott's index of agreement of 0.98 and 0.99, respectively. For simulation of monthly streamflow, Willmott's index of agreement ranged from 0.93 to 0.95. For simulation of daily streamflow, Willmott's index of agreement ranged from 0.84 to 0.85. The daily simulations challenged the temporal and spatial resolution of our measured precipitation data. Discrepancies between simulated and measured data may result from the model's inability to effectively address frozen soils and snowmelt runoff processes and in accurately representing evapotranspiration.  相似文献   

3.
ABSTRACT: A generalized unit hydrograph method is developed and evaluated for ungaged watersheds. A key component in this method is the value of a dimensionless storage coefficient. Procedures to estimate this coefficient are given using calibrated values from 142 rainfall-runoff events gaged in watershed located mainly in the Eastern US. Only limited success was obtained in predicting this storage coefficient. Thirty-seven, independent rainfall-runoff events were used to test the proposed technique. The generalized unit hydrograph predicted the observed runoff hydrographs fairly well with considerable improvement in accuracy over the SCS dimensionless unit hydrograph. Approximately one-half of test storms had percent errors in predicted peak flow rates that were less than 34 percent compared to percent error of 88 percent with the SCS method.  相似文献   

4.
ABSTRACT: The AGNPS (AGricultural NonPoint Source) model was evaluated for predicting runoff and sediment delivery from small watersheds of mild topography. Fifty sediment yield events were monitored from two watersheds and five nested subwater-sheds in East Central Illinois throughout the growing season of four years. Half of these events were used to calibrate parameters in the AGNPS model. Average calibrated parameters were used as input for the remaining events to obtain runoff and sediment yield data. These data were used to evaluate the suitability of the AGNPS model for predicting runoff and sediment yield from small, mild-sloped watersheds. An integrated AGNPS/GIS system was used to efficiently create the large number of data input changes necessary to this study. This system is one where the AGNPS model was integrated with the GRASS (Geographic Resources Analysis Support System) GIS (Geographical Information System) to develop a decision support tool to assist with management of runoff and erosion from agricultural watersheds. The integrated system assists with the development of input GIS layers to AGNPS, running the model, and interpretation of the results.  相似文献   

5.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

6.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   

7.
ABSTRACT: Urban development has compromised the quality of physical elements offish habitat in low‐order spawning and rearing streams. In order to identify where priorities should lie in stream rehabilitation, field surveys of a number of streams were conducted near Vancouver, British Columbia. All of the streams were located in watersheds which were urbanized approximately 20 years earlier. The study watersheds ranged from 5 to 77 percent total impervious area (percent TIA). The urban streambeds were found to have less fine material and slightly higher values of intragravel dissolved oxygen than in rural streams. This improved gravel quality is attributed to the higher peak flows generated by impervious areas, and the reduced recruitment of fine material in the urban watersheds. Summer base flow was uniformly low when imperviousness was above 40 percent, evidenced by a decrease in velocity rather than water depth. Large woody debris (LWD) was scarce in all streams with > 20 percent TIA. A healthy buffer zone and abundant LWD were found to stabilize stream banks. The introduction of LWD is considered the most important strategy for stream rehabilitation. Stormwater detention ponds, in contrast, are concluded to have few hydrological benefits if constructed after a stream has reached its urban equilibrium.  相似文献   

8.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

9.
Subsurface tile‐drained agricultural fields are known to be important contributors to nitrate in surface water in the Midwest, but the effect of these fields on nitrate at the watershed scale is difficult to quantify. Data for 25 watersheds monitored by the Indiana Department of Environmental Management and located near a U.S. Geological Survey stream gage were used to investigate the relationship between flow‐weighted mean concentration (FWMC) of nitrate‐N and the subsurface tile‐drained area (DA) of the watershed. The tile DA was estimated from soil drainage class, land use, and slope. Nitrate loads from point sources were estimated based on reported flows of major permitted facilities with mean nitrate‐N concentrations from published sources. Linear regression models exhibited a statistically significant relationship between annual/monthly nonpoint source (NPS) nitrate‐N and DA percentage. The annual model explained 71% of the variation in FWMC of nitrate‐N. The annual and monthly models were tested in 10 additional watersheds, most with absolute errors within 1 mg/l in the predicted FWMC. These models can be used to estimate NPS nitrate for unmonitored watersheds in similar areas, especially for drained agricultural areas where model performance was strongest, and to predict the nitrate reduction when various tile drainage management techniques are employed.  相似文献   

10.
11.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

12.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

13.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   

14.
Pressures on water resources due to changing climate, increasing demands, and enhanced recognition of environmental flow needs result in the need for hydrology information to support informed water allocation decisions. However, the absence of hydrometric measurements and limited access to hydrology information in many areas impairs water allocation decision‐making. This paper describes a water balance‐based modeling approach and an innovative web‐based decision‐support hydrology tool developed to address this need. Using high‐resolution climate, vegetation, and watershed data, a simple gridded water balance model, adjusted to account for locational variability, was developed and calibrated against gauged watersheds, to model mean annual runoff. Mean monthly runoff was modeled empirically, using multivariate regression. The modeled annual runoff results are within 20% of the observed mean annual discharge for 78% of the calibration watersheds, with a mean absolute error of 16%. Modeled monthly runoff corresponds well to observed monthly runoff, with a median Nash–Sutcliffe statistic of 0.92 and a median Spearman rank correlation statistic of 0.98. Monthly and annual flow estimates produced from the model are incorporated into a map‐ and watershed‐based decision‐support system referred to as the Northeast Water Tool, to provide critical information to decision makers and others on natural water supply, existing allocations, and the needs of the environment.  相似文献   

15.
ABSTRACT: A one-layer decreasing-availability monthly water balance model is used to estimate monthly surplus that flows into the Lake Pontchartrain Basin from the Amite, Tickfaw, Natalbany, Tangipahoa, and Tchefuncte Rivers for water years 1949 through 1990. The modeled annual surplus for each drainage basin is compared to gauged annual discharge obtained from the United States Geological Survey. This provides an estimate of the differential success of the model over watersheds of various sizes, and also suggests appropriate adjustment factors to be used in future water balance analyses of similar basins in humid subtropical climate regions. Results show that annual surplus values agree well with the USGS values, after an annual adjustment of about 140 mm (11 to 28 percent of the basin surplus) is subtracted from the annual modeled totals to compensate for overestimation by the model. However, inter-annual variability is high in the annual cycles. Winter and spring discharges can also be modeled successfully.  相似文献   

16.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model, designed for use on rural ungaged basins and incorporating a GRASS GIS interface, was used to model the hydrologic response of the Ariel Creek watershed of northeastern Pennsylvania. Model evaluation of daily flow prior to calibration revealed a deviation of runoff volumes (Dv) of 68.3 percent and a Nash-Sutcliffe coefficient of-0.03. Model performance was affected by unusually large observed snowmelt events and the inability of the model to accurately simulate baseflow, which was influenced by the presence of fragipans. Seventy-five percent of the soils in the watershed contain fragipans. Model calibration yielded a Dv of 39.9 percent and a Nash-Sutcliffe coefficient of 0.04, when compared on a daily basis. Monthly comparisons yielded a Nash-Sutcliffe coefficient of 0.14. Snowmelt events in the springs of 1993 and 1994, which were unusually severe, were not adequately simulated. Neglecting these severe events, which produced the largest and third largest measured flows for the period of record, a Dv of 4.1 percent and Nash-Sutcliffe coefficient of 0.20 were calculated on a daily comparison, while on a monthly basis the Nash-Sutciffe coefficient was 0.55. These results suggest that the SWAT model is better suited to longer period simulations of hydrologic yields. Baseflow volumes were accurately simulated after calibration (Dv= -0.2 percent). Refinements made to the algorithms controlling subsurface hydrology and snowmelt, to better represent the presence of fragipans and snowmelt events, would likely improve model performance.  相似文献   

17.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

18.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

19.
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

20.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号