首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Alterations to flow regimes for water management objectives have degraded river ecosystems worldwide. These alterations are particularly profound in Mediterranean climate regions such as California with strong climatic variability and riverine species highly adapted to the resulting flooding and drought disturbances. However, defining environmental flow targets for Mediterranean rivers is complicated by extreme hydrologic variability and often intensive water management legacies. Improved understanding of the diversity of natural streamflow patterns and their spatial arrangement across Mediterranean regions is needed to support the future development of effective flow targets at appropriate scales for management applications with minimal resource and data requirements. Our study addresses this need through the development of a spatially explicit reach‐scale hydrologic classification for California. Dominant hydrologic regimes and their physio‐climatic controls are revealed, using available unimpaired and naturalized streamflow time‐series and generally publicly available geospatial datasets. This methodology identifies eight natural flow classes representing distinct flow sources, hydrologic characteristics, and catchment controls over rainfall‐runoff response. The study provides a broad‐scale hydrologic framework upon which flow‐ecology relationships could subsequently be established towards reach‐scale environmental flows applications in a complex, highly altered Mediterranean region.  相似文献   

2.
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola‐Chattahoochee‐Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface‐depression storage capacity were used as inputs to the Precipitation‐Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.  相似文献   

3.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

4.
Widespread afforestation has been proposed as one means of addressing the increasing dryland and stream salinity problem in Australia. However, modelling results presented here suggest that large-scale tree planting will substantially reduce river flows and impose costs on downstream water users if planted in areas of high runoff yield. Streamflow reductions in the Macquarie River, NSW, Australia are estimated for a number of tree planting scenarios and global warming forecasts. The modelling framework includes the Sacramento rainfall-runoff model and IQQM, a streamflow routing tool, as well as various global climate model outputs from which daily rainfall and potential evaporation data files have been generated in OzClim, a climate scenario generator. For a 10% increase in tree cover in the headwaters of the Macquarie, we estimate a 17% reduction in inflows to Burrendong Dam. The drying trend for a mid-range scenario of regional rainfall and potential evaporation caused by a global warming of 0.5 degree C may cause an additional 5% reduction in 2030. These flow reductions will decrease the frequency of bird-breeding events in Macquarie Marshes (a RAMSAR protected wetland) and reduce the security of supply to irrigation areas downstream. Inter-decadal climate variability is predicted to have a very significant influence on catchment hydrologic behaviour. A further 20% reduction in flows from the long-term historical mean is possible, should we move into an extended period of below average rainfall years, such as occurred in eastern Australia between 1890 and 1948. Because current consumptive water use is largely adapted to the wetter conditions of post 1949, a return to prolonged dry periods would cause significant environmental stress given the agricultural and domestic water developments that have been instituted.  相似文献   

5.
For water‐resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate‐model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC‐driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy‐only” method). With the exception of the energy‐only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep‐change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC‐induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water‐resource impact analyses.  相似文献   

6.
Riverine nitrate (NO3) is a well‐documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long‐term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long‐term data availability and to represent a range of climate and land‐use conditions. We examined NO3 at the monitoring stations, using a flow‐weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945‐1980 at most of the stations and have remained elevated, but stopped increasing during 1981‐2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century‐scale dataset adds to our understanding of long‐term NO3 patterns in the U.S.  相似文献   

7.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   

8.
Abstract: The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid‐structured, hydrologic model, was used to simulate the June‐2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain‐gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.  相似文献   

9.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

10.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

11.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

12.
Although it is well established that the availability of upstream flow (AUF) affects downstream water supply, its significance has not been rigorously categorized and quantified at fine resolutions. This study aims to fill this gap by providing a nationwide inventory of AUF and local water resource, and assessing their roles in securing water supply across the 2,099 8‐digit hydrologic unit code watersheds in the conterminous United States (CONUS). We investigated the effects of river hydraulic connectivity, climate variability, and water withdrawal, and consumption on water availability and water stress (ratio of demand to supply) in the past three decades (i.e., 1981–2010). The results show that 12% of the CONUS land relied on AUF for adequate freshwater supply, while local water alone was sufficient to meet the demand in another 74% of the area. The remaining 14% highly stressed area was mostly found in headwater areas or watersheds that were isolated from other basins, where stress levels were more sensitive to climate variability. Although the constantly changing water demand was the primary cause of escalating/diminishing stress, AUF variation could be an important driver in the arid south and southwest. This research contributes to better understanding of the significance of upstream–downstream water nexus in regional water availability, and this becomes more crucial under a changing climate and with intensified human activities.  相似文献   

13.
Urbanization impacts the stormwater regime through increased runoff volumes and velocities. Detention ponds and low impact development (LID) strategies may be implemented to control stormwater runoff. Typically, mitigation strategies are designed to maintain postdevelopment peak flows at predevelopment levels for a set of design storms. Peak flow does not capture the extent of changes to the hydrologic flow regime, and the hydrologic footprint residence (HFR) was developed to calculate the area and duration of inundated land during a storm. This study couples a cellular automata land cover change model with a hydrologic and hydraulic framework to generate spatial projections of future development on the fringe of a rapidly urbanizing metropolitan area. The hydrologic flow regime is characterized for existing and projected land cover patterns under detention pond and LID‐based control, using the HFR and peak flow values. Results demonstrate that for less intense and frequent rainfall events, LID solutions are better with respect to HFR; for larger storms, detention pond strategies perform better with respect to HFR and peak flow.  相似文献   

14.
In the Appalachian region of the eastern United States, mountaintop removal mining (MTM) is a dominant driver of land‐cover change, impacting 6.8% of the largely forested 4.86 million ha coal fields region. Recent catastrophic flooding and documented biological impairment downstream of MTM has drawn sharp criticism to this practice. Despite its extent, scale, and use since the 1970s, the impact of MTM on hydrology is poorly understood. Therefore, the goal of this study was a multiscale evaluation to establish the nature of hydrologic impacts associated with MTM. To quantify the extent of MTM, land‐cover change over the lifetime of this practice is estimated for a mesoscale watershed in southern West Virginia. To assess hydrologic impacts, we conducted long‐term trend analyses to evaluate for systematic changes in hydrology at the mesoscale, and conducted hydrometric and response time modeling to characterize storm‐scale responses of a MTM‐impacted headwater catchment. Results show a general trend in the conversion of forests to mines, and significant decreases in maximum streamflow and variability, and increases in base‐flow ratio attributed to valley fills and deep mine drainage. Decreases in variability are shown across spatial and temporal scales having important implications for water quantity and quality. However, considerable research is necessary to understand how MTM impacts hydrology. In an effort to inform future research, we identify existing knowledge gaps and limitations of our study.  相似文献   

15.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

16.
Extreme climate events, floods, and drought, cause huge impact on daily lives. In order to produce society resilient to extreme events, it is necessary to assess the impact of frequent and high intensity storm events on design parameters. This article describes a methodology to develop future peak “design discharges” throughout the United States that can be used as a guidance to map future floodplains. In order to develop a lower and upper limit for anticipated peak flow discharges, two future growth scenarios — Representative Concentration Pathways (RCPs)‐RCP 2.6 and 8.5 were identified as the weak and strong climate scenario respectively based on the output from the global climate models. The Generalized Least Square technique in United States Geological Survey's Weighted Multiple Regression (WREG) program was used to develop regression equations that relate peak discharges to basin and climate parameters of the contributing watershed. The design discharges reflect the most recent climate model results. Number of frost days, heavy rainfall days, high temperature days, and snow depth were found to be the common extreme climate parameters influencing the regression equations. This methodology can be extended to other flood frequency events if rainfall data is available. The future discharges can be utilized in hydraulics models to estimate floodplains that can assist in resilient infrastructure planning and outline climate change adaptation strategies.  相似文献   

17.
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow.  相似文献   

18.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

19.
ABSTRACT: A macroscale hydrologic model is developed for regional climate assessment studies under way in the southeastern United States. The hydrologic modeling strategy is developed to optimize spatial representation of basin characteristics while maximizing computational efficiency. The model employs the “grouped response unit” methodology, which follows the natural drainage pattern of the area. First order streams are delineated and their surface characteristics are tested so that areas with statistically similar characteristics can be combined into larger computational zones for modeling purposes. Hydrologic response units (HRU) are identified within the modeling units and a simple three‐layer water balance model, Soil and Water Assessment Tool (SWAT), is executed for each HRU. The runoff values are then convoluted using a triangular unit hydrograph and routed by Muskingum‐Cunge method. The methodology is shown to produce accurate results relative to other studies, when compared to observations. The model is used to evaluate the potential error in hydrologic assessments when using GCM predictions as climatic input in a rainfall‐runoff dominated environment. In such areas, the results from this study, although limited in temporal and spatial scope, appear to imply that use of GCM climate predictions in short term quantitative analyses studies in rainfall‐runoff dominated environments should proceed with caution.  相似文献   

20.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号