首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management.  相似文献   

2.
Future climate and land‐use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast and Midwest and (2) native fish species richness (i.e., number of species) for the Upper Mississippi water resource region (UMWRR). Six alternative scenarios of climate change, land‐use change, and human population growth indicated future water supplies will, on average across the region, be adequate to meet anthropogenic demands. Nevertheless, the number of individual watersheds experiencing severe stress (demand > supplies) was projected to increase for most scenarios, and some watersheds were projected to experience severe stress under multiple scenarios. Similarly, we projected declines in fish species richness for UMWRR watersheds and found the number of watersheds with projected declines and the average magnitude of declines varied across scenarios. All watersheds in the UMWRR were projected to experience declines in richness for at least two future scenarios. Many watersheds projected to experience declines in fish species richness were not projected to experience severe anthropogenic water stress, emphasizing the need for multidimensional impact assessments of changing water resources.  相似文献   

3.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

4.
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola‐Chattahoochee‐Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface‐depression storage capacity were used as inputs to the Precipitation‐Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.  相似文献   

5.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   

6.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

7.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

8.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

9.
Despite the advances in climate change modeling, extreme events pose a challenge to develop approaches that are relevant for urban stormwater infrastructure designs and best management practices. The study first investigates the statistical methods applied to the land‐based daily precipitation series acquired from the Global Historical Climatology Network‐Daily (GHCN‐D). Additional analysis was carried out on the simulated Multivariate Adaptive Constructed Analogs (MACA)‐based downscaled daily extreme precipitation of 15 General Circulation Models and Weather Research and Forecasting‐based hourly extreme precipitation of North American Regional Reanalysis to discern the return period of 24‐hr and 48‐hr events. We infer that the GHCN‐D and MACA‐based precipitation reveals increasing trends in annual and seasonal extreme daily precipitation. Both BCC‐CSM1‐1‐m and GFDL‐ESM2M models revealed that the magnitude and frequency of extreme precipitation events are projected to increase between 2016 and 2099. We conclude that the future scenarios show an increase in magnitudes of extreme precipitation up to three times across southeastern Virginia resulting in increased discharge rates at selected gauge locations. The depth‐duration‐frequency curve predicted an increase of 2–3 times in 24‐ and 48‐h precipitation intensity, higher peaks, and indicated an increase of up to 50% in flood magnitude in future scenarios.  相似文献   

10.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

11.
Watershed modeling in 20 large, United States (U.S.) watersheds addresses gaps in our knowledge of streamflow, nutrient (nitrogen and phosphorus), and sediment loading sensitivity to mid‐21st Century climate change and urban/residential development scenarios. Use of a consistent methodology facilitates regional scale comparisons across the study watersheds. Simulations use the Soil and Water Assessment Tool. Climate change scenarios are from the North American Regional Climate Change Assessment Program dynamically downscaled climate model output. Urban and residential development scenarios are from U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios project. Simulations provide a plausible set of streamflow and water quality responses to mid‐21st Century climate change across the U.S. Simulated changes show a general pattern of decreasing streamflow volume in the central Rockies and Southwest, and increases on the East Coast and Northern Plains. Changes in pollutant loads follow a similar pattern but with increased variability. Ensemble mean results suggest that by the mid‐21st Century, statistically significant changes in streamflow and total suspended solids loads (relative to baseline conditions) are possible in roughly 30‐40% of study watersheds. These proportions increase to around 60% for total phosphorus and total nitrogen loads. Projected urban/residential development, and watershed responses to development, are small at the large spatial scale of modeling in this study.  相似文献   

12.
Srinivasan, M.S., J. Schmidt, S. Poyck, and E. Hreinsson, 2011. Irrigation Reliability Under Climate Change Scenarios: A Modeling Investigation in a River‐Based Irrigation Scheme in New Zealand. Journal of the American Water Resources Association (JAWRA) 47(6):1261–1274. DOI: 10.1111/j.1752‐1688.2011.00568.x Abstract: The impact of climate change (CC) on irrigation reliability in a river‐based irrigation scheme in New Zealand was investigated. Reliability was defined as the river’s ability to meet the demand. Two future periods were considered, 2030‐49 (“2040”) and 2080‐99 (“2090”), and reliability at these periods were compared against those in 1980‐99 (“current”). A hydrology model, calibrated and validated for current condition, was applied to simulate flows for CC scenarios. Annual precipitation and mean temperatures were predicted to increase under CC scenarios over current condition. Occurrence of high intensity rainfall events indicated large flows under CC scenarios, though these increases could be occurring outside the irrigation season (September‐April). Compared to current condition, under CC scenarios, the number of days per season supply falling below demand could increase by 5 (2040) to 17% (2090). Snow storage plays a major role in sustaining flows in early spring under current condition. However, with increasing temperatures under CC scenarios, the average annual snow water storage could decrease from 155 mm (current) to 97‐134 mm (2040) and 40‐90 mm (2090). Under CC scenarios, to sustain the current levels of land and water uses in this scheme, storage options need to be explored.  相似文献   

13.
Fog and low cloud cover (FLCC) and late summer recharge increase stream baseflow and decrease stream temperature during arid Mediterranean climate summers, which benefits salmon especially under climate warming conditions. The potential to discharge cool water to streams during the late summer (hydrologic capacity; HC) furnished by FLCC and recharge were mapped for the 299 subwatersheds ranked Core, Phase 1, or Phase 2 under the National Marine Fisheries Service Recovery Plan that prioritized restoration and threat abatement action for endangered Central California Coast Coho Salmon evolutionarily significant unit. Two spatially continuous gridded datasets were merged to compare HC: average hrs/day FLCC, a new dataset derived from a decade of hourly National Weather Satellite data, and annual average mm recharge from the USGS Basin Characterization Model. Two use‐case scenarios provide examples of incorporating FLCC‐driven HC indices into long‐term recovery planning. The first, a thermal analysis under future climate, projected 65% of the watershed area for 8–19 coho population units as thermally inhospitable under two global climate models and identified several units with high resilience (high HC under the range of projected warming conditions). The second use case investigated HC by subwatershed rank and coho population, and identified three population units with high HC in areas ranked Phase 1 and 2 and low HC in Core. Recovery planning for cold‐water fish species would benefit by including FLCC in vulnerability analyses.  相似文献   

14.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

15.
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase.  相似文献   

16.
For water‐resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate‐model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC‐driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy‐only” method). With the exception of the energy‐only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep‐change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC‐induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water‐resource impact analyses.  相似文献   

17.
Water resources and land use are closely linked with each other and with regional climate, assembling a very complex system. The understanding of the interconnecting relations involved in this system is an essential step for elaborating public policies that can effectively lead to the sustainable use of water resources. In this study, an integrated modelling framework was assembled in order to investigate potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR) in the Taita Hills, Kenya. The framework comprised a land use change simulation model, a reference evapotranspiration model and synthetic precipitation datasets generated through a Monte Carlo simulation. In order to generate plausible climate change scenarios, outputs from General Climate Models were used as reference to perturbing the Monte Carlo simulations. The results indicate that throughout the next 20 years the low availability of arable lands in the hills will drive agricultural expansion to areas with higher IWR in the foothills. If current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. This expansion will increase by approximately 40% the annual water volume necessary for irrigation. Climate change may slightly decrease crops' IWR in April and November by 2030, while in May a small increase will likely be observed. The integrated assessment of these environmental changes allowed a clear identification of priority regions for land use allocation policies and water resources management.  相似文献   

18.
ABSTRACT: It has been well established that the greenhouse gas loading of the atmosphere has been increasing since the mid 19th century. Consequently, shifts in the earth's radiative balance are expected with accompanying alterations to the earth's climate. With these anticipated, and perhaps already observable, changes in both global and regional climate, managers of regional water resources seek insight to the possible impacts climate change may have on their present and future water supplies. The types and degrees of impacts that climate change may have on New York City's water supply system were assessed in a study of a watershed at Allaben, New York. Hypothetical scenarios of future climate and climate change projections from three General Circulation Models (GCMs) were used in conjunction with the WatBal hydrological model and the Palmer Drought Severity Index (PDSI) to ascertain how runoff and soil moisture from this watershed may change in a warmer climate. For the worst case predictions, the results indicate that within the century of the 2000s, the watershed's air temperature may increase up to about 11°F, while its precipitation and runoff may decrease by about 13 and 30 percent, respectively. If this watershed is typical of the others within the New York City water supply system, the system's managers should consider implementing mitigation and adaptation strategies in preparation for the worst of these possible future conditions.  相似文献   

19.
To estimate the freshwater loss in coastal aquifers due to salinisation, a numerical model based on the sharp interface assumption has been introduced. The developed methodology will be useful in areas where limited hydrological data are available. This model will elaborate on the changes in fresh groundwater loss with respect to climate change, land use pattern and hydrologic soil condition. The aridity index has been introduced to represent the variations in precipitation and temperature. The interesting finding is that the deforestation leads to increase groundwater recharge in arid areas, because deforestation leads to reduce evapotranspiration even though it favors runoff. The combined climate and land use scenarios show that when the aridity index is less than 60, the agricultural lands give higher groundwater recharge than other land use patterns for all hydrologic soil conditions. The calculated recharge was then used to estimate the freshwater-saltwater interface and percentage of freshwater loss due to salinity intrusion. We found that in arid areas, the fresh groundwater loss increases as the percentage of forest cover increases. The combined effects of deforestation and aridity index on fresh groundwater loss show that deforestation causes an increase in the recharge and existing fresh groundwater resource in areas having low precipitation and high temperature (arid climates).  相似文献   

20.
Abstract: China has experienced a rapid land‐use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC‐water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China’s river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland‐related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China’s water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号