首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   

2.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

3.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

4.
Previous historic trends analyses on 21st Century hydrologic data in the United States generally focus on annual flow statistics and have continued to use USGS hydro‐climatic data network (HCDN) stations, although post‐1988 diversions and runoff regulations are not reflected in the HCDN. Using a more recent dataset, Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES II), compiled by Falcone (2012), which includes more watersheds with reference conditions, a comprehensive analysis of changes in seasonal, and annual streamflow in Wisconsin watersheds is demonstrated. Given the pronounced influence of seasonal hydrology in Wisconsin watersheds, the objective of this study is to elucidate the nature of temporal (annual, seasonal, and monthly) changes in runoff. Considerable temporal and regional variability was found in annual and seasonal streamflow changes between the two historic periods 1951‐1980 and 1981‐2010 considered in the study. For example, the northern watersheds show relatively small changes in streamflow discharge ranging from ?6.0 to 4.2%, while the southern watersheds show relatively large increases in streamflow discharge ranging from 13.1 to 18.2%. To apportion streamflow changes to climate and nonclimatic factors, a method based on potential evapotranspiration changes is demonstrated. Results show that nonclimatic factors account for more than 60% of changes in annual runoff in Wisconsin watersheds considered in the study.  相似文献   

5.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

6.
Woznicki, Sean A. and A. Pouyan Nejadhashemi, 2011. Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios. Journal of the American Water Resources Association (JAWRA) 48(1): 90‐112. DOI: 10.1111/j.1752‐1688.2011.00598.x Abstract: Understanding the sensitivity of best management practices (BMPs) implementation as climate changes will be important for water resources management. The objective of this study was to determine how the sensitivity of BMPs performance vary due to changes in precipitation, temperature, and CO2 using the Soil and Water Assessment Tool. Sediment, total nitrogen, and total phosphorus loads on an annual and monthly basis were estimated before and after implementation of eight agricultural BMPs for different climate scenarios. Downscaled climate change data were obtained from the National Center for Atmospheric Research Community Climate System Model for the Tuttle Creek Lake watershed in Kansas and Nebraska. Using a relative sensitivity index, native grass, grazing management, and filter strips were determined to be the most sensitive for all climate change scenarios, whereas porous gully plugs, no‐tillage, and conservation tillage were the least sensitive on an annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies largely on a seasonal basis for all climate change scenarios. The results of this research suggest that the majority of agricultural BMPs tested in this study are significantly sensitive to climate change. Therefore, caution should be exercised in the decision‐making processes.  相似文献   

7.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

8.
ABSTRACT: The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row‐crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row‐crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.  相似文献   

9.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

10.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

11.
Ensuring an adequate, reliable, clean, and affordable water supply for citizens and industries requires informed, long-range water supply planning, which is critically important for water security. A balance between water supply and demand must be considered for a long-term plan. However, water demand projections are often highly uncertain. Climate change could impact the hydrologic processes, and consequently, threaten water supply. Thus, understanding the uncertainties in future water demand and climate is critical for developing a sound water supply plan. In Illinois, regional water supply planning attempts to explore the impacts of future water demand and climate on water supply using scenario analyses and hydrologic modeling. This study is aimed at developing a water supply planning framework that considers both future water demand and climate change impacts. This framework is based on the Soil and Water Assessment Tool to simulate the watershed hydrology and conduct scenario analyses that consider the uncertainties in both future water demand and climate as well as their impacts on water supply. The framework was applied to water supply planning efforts in the Kankakee River watershed. The Kankakee River watershed model was calibrated and validated to observed streamflow records at four long-term United States Geological Survey streamflow gages. Because of the many model parameters involved, the calibration process was automated and was followed by a manual refinement, resulting in good model performance. Long-range water demand projections were prepared by the Illinois State Water Survey. Six future water demand scenarios were established based on a suite of assumptions. Climate scenarios were obtained from the Coupled Model Intercomparison Projection Phase 5 datasets. Three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, are used in the study. The scenario simulation results demonstrated that climate change appears to have a greater impact on water availability in the study area than water demand. The framework developed in this study can also be used to explore the impacts of uncertainties of water demand and climate on water supply and can be extended to other regions and watersheds.  相似文献   

12.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

13.
Abstract: Climate change, particularly the projected changes to precipitation patterns, is likely to affect runoff both regionally and temporally. Extreme rainfall events are expected to become more intense in the future in arid urban areas and this will likely lead to higher streamflow. Through hydrological modeling, this article simulates an urban basin response to the most intense storm under anthropogenic climate change conditions. This study performs an event‐based simulation for shorter duration storms in the Flamingo Tropicana (FT) watershed in Las Vegas, Nevada. An extreme storm, defined as a 100‐year return period storm, is selected from historical records and perturbed to future climatic conditions with respect to multimodel multiscenario (A1B, A2, B1) bias corrected and spatially disaggregated data from the World Climate Research Programme's (WCRP's) database. The cumulative annual precipitation for each 30‐year period shows a continuous decrease from 2011 to 2099; however, the summer convective storms, which are considered as extreme storms for the study area, are expected to be more intense in future. Extreme storm events show larger changes in streamflow under different climate scenarios and time periods. The simulated peak streamflow and total runoff volume shows an increase from 40% to more than 150% (during 2041‐2099) for different climate scenarios. This type of analysis can help evaluate the vulnerability of existing flood control system and flood control policies.  相似文献   

14.
Trends in climatic variables, streamflow, agricultural practices, and loads of nutrients and suspended solids were estimated for 1976-1995 in the Maumee and Sandusky watersheds, two large agricultural basins draining to Lake Erie. To understand the contributions that various factors may have made to the trends in loads, earlier results of models linking loads to explanatory variables were combined with estimated trends in those variables. The study period was characterized by increases in temperature, wintertime precipitation and streamflow, conservation farming, and loads of nitrate and total suspended solids; decreases in snowfall and snow cover, fertilizer, manure from livestock, and loads of soluble reactive phosphorus; and relatively steady exports of total phosphorus. After removing the effects of trends in streamflow, nitrate loads increased much less while total suspended solids and total phosphorus loads declined. The analysis suggests that the nitrate increases were due largely to climatic factors, particularly increases in winter streamflow, decreases in snowfall and snow cover, and declining annual precipitation. Decreases in soluble reactive phosphorus were associated with changes in agricultural practices, particularly declines in fertilizer deliveries and head of livestock.  相似文献   

15.
In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.  相似文献   

16.
We investigate the sensitivity of phosphorus loading (mass/time) in an urban stream to variations in climate using nondimensional sensitivity, known as elasticity, methods commonly used by economists and hydrologists. Previous analyses have used bivariate elasticity methods to represent the general relationship between nutrient loading and a variable of interest, but such bivariate relations cannot reflect the complex multivariate nonlinear relationships inherent among nutrients, precipitation, temperature, and streamflow. Using fixed‐effect multivariate regression methods, we obtain two phosphorus models (nonparametric and parametric) for an urban stream with high explanatory power that can both estimate phosphorus loads and the elasticity of phosphorus loading to changes in precipitation, temperature, and streamflow. A case study demonstrates total phosphorus loading depends significantly on season, rainfall, combined sewer overflow events, and flow rate, yet the elasticity of total phosphorus to all these factors remains relatively constant throughout the year. The elasticity estimates reported here can be used to examine how nutrient loads may change under future climate conditions.  相似文献   

17.
Future climate and land‐use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast and Midwest and (2) native fish species richness (i.e., number of species) for the Upper Mississippi water resource region (UMWRR). Six alternative scenarios of climate change, land‐use change, and human population growth indicated future water supplies will, on average across the region, be adequate to meet anthropogenic demands. Nevertheless, the number of individual watersheds experiencing severe stress (demand > supplies) was projected to increase for most scenarios, and some watersheds were projected to experience severe stress under multiple scenarios. Similarly, we projected declines in fish species richness for UMWRR watersheds and found the number of watersheds with projected declines and the average magnitude of declines varied across scenarios. All watersheds in the UMWRR were projected to experience declines in richness for at least two future scenarios. Many watersheds projected to experience declines in fish species richness were not projected to experience severe anthropogenic water stress, emphasizing the need for multidimensional impact assessments of changing water resources.  相似文献   

18.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

19.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

20.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号