首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Studies have been made of the growth characteristics of water hyacinth, Eichhornia crassipes (Mart.) Solms, and its ability to remove N, P and K, in a secondary settling pond of a small secondary sewage treatment plant serving both the academic and residential blocks of the Swire Marine Laboratory, University of Hong Kong. The treatment plant consists of, in series, a primary settling tank, a trickling filter compartment and a secondary settling pond from which part of the treated wastewater is recycled to the primary settling tank while the remaining effluent (1 to 2 m3 daily) mixes with and hence is diluted by the outflowing seawater from the aquarium system of the Swire Marine Laboratory before discharge to the sea. Samples of wastewater have been taken regularly from the primary sedimentation pond, the outflow of the trickling filter, the secondary settling pond and the effluent of the treatment plant (before mixing with aquarium outflow) since January, 1992. Physical, chemical and biological characteristics of the samples have been determined and are typical of secondary effluents, with a mean pH of about 7.5, total solids 1200 mg L−1, suspended solids 45 mg L−1, conductivity 2000 μS cm−1, salinity 1 ppt, dissolved oxygen 2 mg L−1, BOD5 45 mg L−1, Kjeldahl-N 30 mg L−1, NH4,-N 25 mg L−1, NO3-N 4 mg L−1, total P 10 mg L−1, K 35 mg L−1 and total coliforms of less than 105 colonies 100 ml−1.Water hyacinth plants have been stocked in the secondary settling pond as an integral part of the treatment plant so as to improve the quality of, as well as to retrieving and recycling nutrient elements from, the wastewater. The plants are periodically harvested to maintain an active growing crop. The growth rate, standing crop biomass, tissue nutrient composition, nutrient storage and accumulation rate of two growth cycles, one from February 25 to March 18 (mean temperature 17.6°C) and the other from 22 April to 12 May (24.8°C) are reported. The water hyacinth assumed a relatively high standing crop biomass of 10 kg m−2 (5 to 6 t DM ha−1), and growth rates of 48 and 225 g m−2 day−1, respectively, for the first and second growth period. Nutrient storage capacities were relatively high, at about 20, 7.5 and 16.5 g m−2 for N, P and K, respectively. The nutrient composition was very high, reaching 5.42% for N, 1.97 for P, and 4.57 for K. Both the stem and lamina accumulated high levels of N, while the petiole had the highest level of P and K. Apart from nutrient removal, the water hyacinth also helped to decrease the suspended solids, BOD5 value and total coliforms of the wastewater.It is concluded that water hyacinth improves the quality of wastewater in such small-scale sewage treatment plants and it is recommended that frequent harvests of water hyacinth would increase the treatment efficiency, especially during the active growing season with high temperatures coupled with intense solar radiation.  相似文献   

2.
The present study investigates the physical, chemical, and biological characteristics of spring water samples in Shoubak area in the southern Jordan. The samples were collected from May 2004 to May 2005. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), major anions (Cl, NO3, HCO3, SO42−, PO43−, F), and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Cr3+, Ni2+, Zn2+, Pb2+, Cd2+). Water quality for available springs showed high salinity through long period of contact with rocks. The ion concentrations in the water samples were from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. Some springs showed elevated nitrate and sulfate contents which could reflect to percolation from septic tanks, cesspools, and agricultural practices. The infiltration of wastewater from cesspools and septic tanks into groundwater is considered the major source of water pollution. The results showed that there were great variations among the analyzed samples with respect to their physical, chemical and biological parameters, which lie below the maximum permissible levels of the Jordanian and WHO drinking water standards. The results indicate that the trace metals of spring’s water of Shoubak area do not generally pose any health or environmental problems. Factor analysis was used to identify the contributers to water quality. The first factor represents major contribution from anthropogenic activities, while the second one represents major contribution from natural processes.  相似文献   

3.
Groundwater is a basic source of drinking water supply for urban and rural areas. This is especially the case for communities located in arid and semi-arid regions that rely on groundwater for drinking purposes. The present study set out to assess the potential health impacts of water impurities and to investigate the qualitative status of drinking water in Robat Karim rural areas, located in southwest Tehran, Iran. A total of 66 samples were collected from the water distribution network of 11 villages (33 sampling points, on two occasions) during September 2020 and were tested in terms of the most common quality parameters such as pH, mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), chloride (Cl), chlorate (ClO3), nitrite (NO2), nitrate (NO3), and flouride (F). Multiple methods and indexes including water quality index (WQI), hazard quotient (HQ), and hazard index (HI), were worked out to assess the quality of water and health risk assessment of NO3 Pb2+ and Hg2+. The results revealed that 33% and 90% of sampling sites have significantly high nitrate and total hardness (TH) concentrations, exceeding the maximum permissible limits set by World Health Organization (WHO; 50 and 200 mg/L, respectively). Furthermore, five sampling points exhibited poor WQIs mainly related to NO3 and TH. HQ values higher than 1 for nitrate were noticed in most sampling locations. Except for one sampling point, the HQ obtained for Pb2+ and Hg2+ were below 1 indicating no obvious health hazard. This study represents that children and infants are at higher risk of chronic toxicity by excess NO3 intake. The health hazard that is yet imposed on the community by NO3 necessitates regular monitoring of drinking water, the use of advanced technologies to purify water or otherwise alternative resources should be proposed.  相似文献   

4.
This study investigated the quality of groundwater collected from two industrial and residential locations, each within the Lagos metropolis. Prescribed standard procedures of the American Public Health Association (APHA) were used to measure the physicochemical parameters of each of the groundwater samples, which include pH, electrical conductivity (EC), dissolved oxygen, total dissolved solids (TDS), biological oxygen demand, chemical oxygen demand; the anions chloride (Cl?), nitrate (NO3?), sulfate (SO4?), and phosphate (PO4?); and heavy metals copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), cobalt (Co), cadmium (Cd), and chromium (Cr). Based on the laboratory analysis, the physicochemical parameters that were measured were within the permissible ranges specified by the World Health Organization and the Nigerian Standard for Drinking Water Quality Standards Organization of Nigeria (SON), except for pH, TDS, EC, Pb, Mn, and Fe for groundwater samples from the industrial locations and for pH, Pb, Mn, and Fe for residential locations. The elevated concentrations of TDS and EC reported for groundwater samples from industrial locations were attributed to the heavy discharge of effluents from nearby industrial treatment plants as well as the dissolution of ionic heavy metals from industrial activities involving the use of heavy machines. Statistical analysis using Pearson's correlation revealed the physicochemical parameters to be moderately and strongly correlated with one another at either p < .05 or < .01. In conclusion, groundwater samples from residential locations are more suitable for drinking than those from industrial locations.  相似文献   

5.
The present research deals with the quantification of health hazard in a fluorosis prone area from east-coast of India. The average health hazard quotients are 2.09, 2.42, 1.79, and 1.69 for infants, children, male, and female adults, respectively. These values are more than the tolerance limit (1) in 92% groundwater samples and 96% of the study area. The children are more vulnerable to fluorosis than infants and adults. Ca2+/ Na+ versus HCO3/Na+ and Ca2+/Na+ versus Mg2+/Na+ plots suggest silicate weathering as the prime factor while linear relationship of TDS versus NO3 + (Cl/HCO3) supports the anthropogenic input of F to the aquifer system. The study suggests that the F ions are chiefly derived from fluorite, apatite, biotite, and hornblende present in the granitic basement under alkaline environment. The secondary sources are domestic and industrial sewage as well as return flow from irrigation with ingredients of phosphate fertilizers. The adverse effects of fluorosis can be minimized by mass awareness programmes, alternative source of potable drinking water, defluoridation techniques, dilution of high F concentration in groundwater, and minimizing the use of phosphate fertilizers.  相似文献   

6.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

7.
Groundwater (well water) from a residential area within the vicinity of an industrial estate in Lagos, Nigeria were sampled and analysed by Flame Atomic Absorption Spectroscopy for their heavy metals content. This was with a view of assessing the quality of the water, which was being used for domestic activities, especially, drinking usually without treatment. Total trace metal determination by mineral acid digestion of water samples was applied. This method proved to be better than an extractive concentration technique in the quality assurance protocols with the recovery range being 90.7 ± 0.006–97.6 ± 0.003%. Mean concentration of trace metals in water samples ranged from Fe: 0.05–0.47 mg l−1; Al: 0.1–1.54 mg l−1; Cu: 0.14–1.39 mg l−1; Zn: 0.04–0.43 mg l−1; Cd: trace–0.02 mg l−1; Pb: trace–0.03 mg l−1, Mn: 0.01–0.18 mg l−1 and Ni: 0.02–0.11 mg l−1. Physical parameters of water samples examined were within the drinking water safety limits except for conductivity. Results generally indicate the presence of heavy metal constituents in groundwater samples. Detection of metals such as cadmium and lead which have serious health implications above WHO and USEPA limits in drinking water gives cause for concern.  相似文献   

8.
Awareness of environmental heterogeneity in ecosystems is critical for management and conservation. We used the Xochimilco freshwater system to describe the relationship between heterogeneity and human activities. This tropical aquatic ecosystem south of Mexico City is comprised of a network of interconnected canals and lakes that are influenced by agricultural and urban activities. Environmental heterogeneity was characterized by spatially extensive surveys within four regions of Xochimilco during rainy and dry seasons over 2 years. These surveys revealed a heterogeneous system that was shallow (1.1 m, SD = 0.4 ), warm (17°C, SD = 2.9), well oxygenated (5.0 mg l−1, SD = 3), turbid (45.7 NTU SD = 26.96), and extremely nutrient-rich (NO3–N = 15.9 mg l−1, SD=13.7; NH4–N = 2.88 mg l−1, SD = 4.24; and PO4–P =  8.3 mg l−1, SD = 2.4). Most of the variables were not significantly different between years, but did differ between seasons, suggesting a dynamic system within a span of a year but with a high resilience over longer periods of time. Maps were produced using interpolations to describe distributions of all variables. There was no correlation between individual variables and land use. Consequently, we searched for relationships using all variables together by generating a combined water quality index. Significant differences in the index were apparent among the four regions. Index values also differed within individual region and individual water bodies (e.g., within canals), indicating that Xochimilco has high local heterogeneity. Using this index on a map helped to relate water quality to human activities and provides a simple and clear tool for managers and policymakers.  相似文献   

9.
B2O3 was recovered from waste samples such as borogypsum, reactor waste, boronic sludges, waste mud and concentrator waste by leaching processes using distilled water, sulfur dioxide- and carbon dioxide-saturated water. In the leaching processes, temperature, stirring time and solid-to-liquid ratio were taken as parameters. The amount of B2O3 leached increased with increasing temperature and stirring time and it also increased with decreasing solid-to-liquid ratio, but the increase was less than that recorded for the leaching temperature and the stirring time. SO2 saturated water is a more effective leaching solvent than CO2 saturated water for boronic wastes. By the end of the experiments, more than 90% of B2O3 recovery was found as boric acid. In the leaching of boric acid from boronic wastes in water saturated with sulfur dioxide, it was observed that the leaching rate increases with increasing temperature and leaching time. The overall average values of the kinetic parameters were: apparent activation energy (E) 33.2 kJ mol−1, pre-exponential factor (A) 8.2×109 min−1, reaction order (n) 0.97 and rate constant (k) 3.37×103 min−1 for the leaching processes of the boronic wastes.  相似文献   

10.
Carbon dioxide absorption using amine based solvents is a well-known approach for carbon dioxide removal. Especially with the increasing concerns about greenhouse gas emissions, there is a need for an optimization approach capable of multifactor calibration and prediction of interactions. Since conventional methods based on empirical relations are not efficiently applicable, this study investigates use of Response Surface Methodology as a strong optimization tool. A bubble column reactor was used and the effect of solvent concentration (10.0, 20.0 and 30.0 vol%), flow rate (4.0, 5.0 and 6.0 L min−1), diffuser pore size (0.5, 1.0 and 1.5 mm) and temperature (20.0, 25.0 and 30.0°C) on the absorption capacity and also overall mass transfer coefficient was evaluated. The optimization results for maintaining maximum capacity and overall mass transfer coefficient revealed that different optimization targets led to different tuned operational factors. Overall mass transfer coefficient decreased to 34.7 min−1 when the maximum capacity was the desired target. High reaction rate along with the highest absorption capacity was set as desirable two factor target in this application. As a result, a third scenario was designed to maximize both mass transfer coefficient and absorption capacity simultaneously. The optimized condition was achieved when a gas flow rate of 5.9 L min−1, MEA solution of 29.6 vol%, diffuser pore size of 0.5 mm and temperature of 20.6°C was adjusted. At this condition, mass transfer coefficient reached a maximum of 38.4 min−1, with a forecasted achievable absorption capacity of 120.5 g CO2 per kg MEA.  相似文献   

11.
Water quality index (WQI) models are generally used in hydrochemical studies to simplify complex data into single values to reflect the overall quality. In this study, deep groundwater quality in the Chittur and Palakkad Taluks of the Bharathapuzha river basin of Kerala, India, was assessed by employing the WQI method developed by the Canadian Council of Ministers of the Environment (CCME). The assessment of overall water quality is indispensable due to the specific characteristics of the study area, such as geography, climate, over-drafting, and prevalent agricultural practices. Forty representative samples were collected from the study area for monsoon (MON) and pre-monsoon (PRM) seasons. The results showed a general increase of contents from MON to PRM. The major cations were spread in the order Ca2+>Na+>Mg2+>K+ and the anions HCO3>Cl>CO32− based on their relative abundance. Among various parameters analysed, alkalinity and bicarbonate levels during MON were comparatively high, which is indicative of carbonate weathering, and 90% of the samples failed to meet the World Health Organization (WHO, 2017)/Bureau of Indian Standards (BIS, 2012) drinking water guidelines. The CCME WQI analysis revealed that nearly 50% of the samples during each season represented good and excellent categories. The samples in the poor category comprised 10% in MON and 15% in PRM. The overall WQI exhibited 15% of poor category samples as well. The spatial depiction of CCME WQI classes helped to expose zones of degraded quality in the centre to eastward parts. The spatial and temporal variations of CCME WQI classes and different physicochemical attributes indicated the influence of common factors attributing to the deep groundwater quality. The study also revealed inland salinity at Kolluparamba and Peruvamba stations, where agricultural activities were rampant with poor surface water irrigation.  相似文献   

12.
Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.  相似文献   

13.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   

14.
A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L?1 aqueous solution of an acid dye), and laundry (simulated by a 50 mg L?1 aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L?1 (except in the case of the surface water for which the dosage was 2 mg L?1). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.  相似文献   

15.
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM2.5 mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH4)2SO4, NH4NO3, and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH4)2SO4 and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH4)2SO4, 5.1% that in NH4NO3, and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM10 particles was determined to be 2.2 ± 0.6 and 4.6 ± 1.7 m2 g−1 under dry (RH < 40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80 ± 0.08 and 0.90 ± 0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.  相似文献   

16.
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r 2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r 2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.  相似文献   

17.
In comparison with several other reported inorganic sorbents, Camellia tree leaf and primary sludge obtained from a settling tank as a pretreatment to the activated sludge system in a Hong Kong sewage treatment plant were evaluated for removing Cu(II) from aqueous solutions. Experimental data were modeled by the Langmuir isotherm equation to estimate the maximum sorption capacity (qmax). Results show that, at pH 5.6, biosorbents, Camellia tree leaf and primary sludge in particular, exert higher sorption capacities (qmax > 40 mg g−1) than inorganic sorbents, Na-montmorillonite (qmax = 33.3 mg g−1), fly ash (qmax = 18.8 mg g−1), and goethite powder (10.3 mg g−1). Furthermore, a pseudo second-order kinetic model was found to properly describe the experimental data for both bio- and inorganic sorbents. Sorption of Cu(II) on the Camellia tree leaf and primary sludge were much faster than that on the inorganic sorbents. In addition, desorption tests revealed that the desorption capacities of the two biomaterials are higher than the other selected materials; and much more Cu(II) can be retrieved from the Cu(II)-loaded biosorbents. Finally, increasing solution pH was found to greatly increase qmax and accelerate sorption processes.  相似文献   

18.
In this paper, principal component analysis (PCA) and hierarchical cluster analysis (CA) methods have been used to investigate the water quality of Jajrood River (Iran) and to assess and discriminate the relative magnitude of anthropogenic and “natural” influences on the quality of river water. T, EC, pH, TDS, NH4, NO3, NO2, Turb., T.Hard., Ca, Mg, Na, K, Cl, SO4, SiO2 as physicochemical and TC, FC as biochemical variables have been analyzed in the water samples collected every month over a three-year period from 18 sampling stations along a 50 km section of Jajrood River that is under the influence of anthropogenic and natural changes. Exploratory analysis of experimental data has been carried out by means of PCA and CA in an attempt to discriminate sources of variation in water quality. PCA has allowed identification of a reduced number of mean 5 varifactors, pointing out 85% of both temporal and spatial changes. CA classified similar water quality stations and indicated Out-Meygoon as the most polluted one. Ahar, Baghgol, Rooteh, Befor Zaygan, Fasham, Roodak and Lashgarak were identified as affected by organic pollution. A Scree plot of stations in the first and second extracted components on PCA also gave us a classification of stations due to the similarity of pollution sources. CA and PCA led to similar results, though Out-Meygoon was identified as the most polluted station in both methods. Box-plots showed that PCA could approximately demonstrate temporal and spatial variations. CA gave us an overview of the problem and helped us to classify and better explain the PCA results.  相似文献   

19.
Recycling and conservation efforts for water are the need of the day because of the lack of new water sources and the ever-increasing demand for drinking water. Seedlings of Acacia nilotica L. were irrigated with: canal water (T1, control); municipal effluent (T2); textile effluent (T3); steel effluent (T4); textile + municipal effluent in 1:1 ratio (T5); steel + municipal effluent in 1:2 ratio (T6); steel + textile in 1:2 ratio (T8) and steel + municipal + textile in 1:2:2 ratio (T7) with views to observe effluents effect on the seedlings and its adaptability and to recommend safe disposal of these effluents. Seedlings in T6, T7 and T8 showed 50% lesser height and collar diameter than those in control. Seedlings in T2 attained greatest height, collar diameter, numbers of branches and produced 140 g dry biomass seedling−1. Highest concentration of manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) and lowest concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in the seedlings of T4, T6, T7 and T8 resulted in nutritional imbalance, mineral toxicity and reduction in photosynthetic (Pn) and transpiration (E) rates and caused seedling mortality. Seedlings of T3 had highest sodium concentration and low concentration of Ca, Mg and micronutrients resulting in nutritional imbalance, augmented chlorosis and reduced gas exchange and biomass by half as compared to control. Increased growth, Pn and E and biomass in seedlings of T5 over T3 and survival period in T6, T7 and T8 seedlings suggested a beneficial effect of effluents mixing. Unscientific disposal should be avoided and toxic concentration of metal ions␣may be reduced for long-term application and harmless disposal of effluents in afforestation and urban development.  相似文献   

20.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号