首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kashkan River (KR), located in the west of Iran, is a major source of water supply for residential and agricultural areas as well as livestock. The objective of this study was to assess the spatial and long temporal variations of surface water quality of the KR based on measured chemical ions. The Canadian Council of Ministers of Environment Water Quality Index (CCME WQI) technique was utilized using measurements from 10 sampling stations during a period of 36 years (1974–2009). The measured data included cations (Na+, K+, Ca2+, Mg2+), anions (HCO3 ?, Cl?, SO4 2?), pH, and electrical conductivity. Principal component analysis was performed to identify which of the parameters to be included in the CCME WQI calculations were actually correlated and which ones were responsible for most of the variance observed in the water-quality data. In addition, KR water quality was evaluated for its suitability for drinking and irrigation purposes using conventional methods. Last, trend detection in the WQI time series of the KR showed water-quality degradation at all sampling stations, whereas the Jelhool sub-basin more adversely affects the quality of KR water in the watershed. Nonetheless, on average, the water quality of the KR was rated as fair.  相似文献   

2.
This study focuses on investigating the quality of groundwater for irrigation and drinking water purposes. Spatial distribution of physicochemical and microbiological parameters was assessed from samples collected from springs, hand‐dug wells, and boreholes found the Guna Tana landscape. A total of 70 samples were considered for physical, chemical, and bacteriological water quality determination. The results revealed that most of the groundwater quality index (WQI) values lie between good and excellent. The maximum, minimum, mean, and standard deviation of each water quality parameter were prepared for evaluating groundwater quality. According to the WQI values, more than 83% of the water samples were classified as excellent water for drinking. More than 92% of the water samples showed low sodium hazards for irrigation and about 48% and 46% of the water samples were classified as within the excellent and good water classes for irrigation based on their electrical conductance levels. Therefore, the groundwater that is found in the Guna Tana landscape could be used for drinking and irrigation purposes without any advanced treatment.  相似文献   

3.
Groundwater is a basic source of drinking water supply for urban and rural areas. This is especially the case for communities located in arid and semi-arid regions that rely on groundwater for drinking purposes. The present study set out to assess the potential health impacts of water impurities and to investigate the qualitative status of drinking water in Robat Karim rural areas, located in southwest Tehran, Iran. A total of 66 samples were collected from the water distribution network of 11 villages (33 sampling points, on two occasions) during September 2020 and were tested in terms of the most common quality parameters such as pH, mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), chloride (Cl), chlorate (ClO3), nitrite (NO2), nitrate (NO3), and flouride (F). Multiple methods and indexes including water quality index (WQI), hazard quotient (HQ), and hazard index (HI), were worked out to assess the quality of water and health risk assessment of NO3 Pb2+ and Hg2+. The results revealed that 33% and 90% of sampling sites have significantly high nitrate and total hardness (TH) concentrations, exceeding the maximum permissible limits set by World Health Organization (WHO; 50 and 200 mg/L, respectively). Furthermore, five sampling points exhibited poor WQIs mainly related to NO3 and TH. HQ values higher than 1 for nitrate were noticed in most sampling locations. Except for one sampling point, the HQ obtained for Pb2+ and Hg2+ were below 1 indicating no obvious health hazard. This study represents that children and infants are at higher risk of chronic toxicity by excess NO3 intake. The health hazard that is yet imposed on the community by NO3 necessitates regular monitoring of drinking water, the use of advanced technologies to purify water or otherwise alternative resources should be proposed.  相似文献   

4.
The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca2+–HCO3 ? water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na+–Cl? water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B3+, F?, and SO4 2? and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.  相似文献   

5.
The concern related to the drinking of reverse osmosis (RO) water containing low levels of minerals is growing day by day. This study involves the analysis of water samples from various drinking water sources in a rural site, Mirchpur village, an Indus Valley civilization site (grid location: 29° 18′ 42.3″ N, 76° 10′ 33.0″ E) of Hisar, India, along with the health survey of human subjects. The hydrochemistry of water collected from hand pumps, river canals, tube wells, submersibles, and the RO systems installed in various homes was explored for pH, EC, TH, TDS, turbidity, cations (Na+, Ca2+, Mg2+), anions (CO32−, HCO3, Cl, SO42−, NO3, F), and elements (Fe, Pb, Se) employing the ion chromatography, flame photometry, and ICP-AES techniques. Lead (Pb) and Selenium (Se) were detected in trace amounts (0.30–2.6 μg L−1; 0.10–4.1 μg L−1, respectively) in all the samples, including the samples collected from RO purifiers, but Iron (Fe) was not detected in RO samples even in trace amounts. The F-levels in hand pump water (HPW) and submersible water (SW) (1.9  and 1.7 mg L−1, respectively) and TDS levels in SW (3048 mg L−1) were found to be above WHO and BIS safe limits. TDS levels in the river canal (900 mg L−1), tube well (1104 mg L−1), hand pump (1170 mg L−1), and submersible samples (3048 mg L−1) were found significantly higher as compared to the RO personal water (ROPW; 216 mg L−1) and RO supply water (ROSW; 90 mg L−1). The collected epidemiological data reveals that 21%, 19%, 13%, and 12% of natives reported skin, kidney, hair fall, liver, and stomach issues, respectively, suspecting the crucial role of high TDS and fluoride levels in the area. This study also provides a comparison between the quality of RO and the direct supply water, along with correlation matrices for different parameters, which gives a rationale for the limitations of drinking direct supply water without any purification and RO water containing low mineral content.  相似文献   

6.
The hydrochemical study of the surface water along with land-use/land-cover study of its catchment area is useful for determining its suitability for support to aquatic ecosystem and agricultural purposes. The surface water quality around the wetland in Sugadaira region, Japan, is being affected both by complex hydrogeochemical processes and by anthropogenic activity, mainly intensive agricultural practices. Statistical analysis was carried out in this study using surface water chemistry data to enable hydrochemical evaluation of the water quality based on the ionic constituents, water types, and factors controlling water quality. Results show that the general trend of various ions was found to be Ca2+ > Mg2+ > Na+ > K+ and HCO3  > NO3  > SO4 2− > Cl. Spatial distribution of water chemistry shows that enrichment of NO3 has taken place along one side of the wetland that is exposed directly to human settlement and agricultural practices. This study is vital considering that pollution in a wetland indicates that poor health of water resources in the region not only makes the situation alarming but also calls for immediate attention.  相似文献   

7.
The present research deals with the quantification of health hazard in a fluorosis prone area from east-coast of India. The average health hazard quotients are 2.09, 2.42, 1.79, and 1.69 for infants, children, male, and female adults, respectively. These values are more than the tolerance limit (1) in 92% groundwater samples and 96% of the study area. The children are more vulnerable to fluorosis than infants and adults. Ca2+/ Na+ versus HCO3/Na+ and Ca2+/Na+ versus Mg2+/Na+ plots suggest silicate weathering as the prime factor while linear relationship of TDS versus NO3 + (Cl/HCO3) supports the anthropogenic input of F to the aquifer system. The study suggests that the F ions are chiefly derived from fluorite, apatite, biotite, and hornblende present in the granitic basement under alkaline environment. The secondary sources are domestic and industrial sewage as well as return flow from irrigation with ingredients of phosphate fertilizers. The adverse effects of fluorosis can be minimized by mass awareness programmes, alternative source of potable drinking water, defluoridation techniques, dilution of high F concentration in groundwater, and minimizing the use of phosphate fertilizers.  相似文献   

8.
A Water Quality Index (WQI) is a numeric expression used to evaluate the quality of a given water body and to be easily understood by managers. In this study, a modified nine-parameter Scottish WQI was used to assess the monthly water quality of the Douro River during a 10-year period (1992–2001), scaled from zero (lowest) to 100% (highest). The 98,000 km2 of the Douro River international watershed is the largest in the Iberian Peninsula, split between upstream Spain (80%) and downstream Portugal (20%). Three locations were surveyed: at the Portuguese–Spanish border, 350 km from the river mouth; 180 km from the mouth, where the river becomes exclusively Portuguese; and 21 km from the mouth. The water received by Portugal from Spain showed the poorest quality (WQI 47.3 ± 0.7%); quality increased steadily downstream, up to 61.7 ± 0.7%. In general, the water quality at all three sites was medium to poor. Seasonally, water quality decreased from winter to summer, but no statistical relationship between quality and discharge rate could be established. Depending on the location, different parameters were responsible for the episodic decline of quality: high conductivity and low oxygen content in the uppermost reservoir, and fecal coliform contamination downstream. This study shows the need to enforce the existing international bilateral agreements and to implement the European Water Quality Directive in order to improve the water quantity and quality received by the downstream country of a shared watershed, especially because two million inhabitants use the water from the last river location as their only source of drinking water.  相似文献   

9.
The present study investigates the physical, chemical, and biological characteristics of spring water samples in Shoubak area in the southern Jordan. The samples were collected from May 2004 to May 2005. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), major anions (Cl, NO3, HCO3, SO42−, PO43−, F), and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Cr3+, Ni2+, Zn2+, Pb2+, Cd2+). Water quality for available springs showed high salinity through long period of contact with rocks. The ion concentrations in the water samples were from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. Some springs showed elevated nitrate and sulfate contents which could reflect to percolation from septic tanks, cesspools, and agricultural practices. The infiltration of wastewater from cesspools and septic tanks into groundwater is considered the major source of water pollution. The results showed that there were great variations among the analyzed samples with respect to their physical, chemical and biological parameters, which lie below the maximum permissible levels of the Jordanian and WHO drinking water standards. The results indicate that the trace metals of spring’s water of Shoubak area do not generally pose any health or environmental problems. Factor analysis was used to identify the contributers to water quality. The first factor represents major contribution from anthropogenic activities, while the second one represents major contribution from natural processes.  相似文献   

10.
This study investigated the quality of groundwater collected from two industrial and residential locations, each within the Lagos metropolis. Prescribed standard procedures of the American Public Health Association (APHA) were used to measure the physicochemical parameters of each of the groundwater samples, which include pH, electrical conductivity (EC), dissolved oxygen, total dissolved solids (TDS), biological oxygen demand, chemical oxygen demand; the anions chloride (Cl?), nitrate (NO3?), sulfate (SO4?), and phosphate (PO4?); and heavy metals copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), cobalt (Co), cadmium (Cd), and chromium (Cr). Based on the laboratory analysis, the physicochemical parameters that were measured were within the permissible ranges specified by the World Health Organization and the Nigerian Standard for Drinking Water Quality Standards Organization of Nigeria (SON), except for pH, TDS, EC, Pb, Mn, and Fe for groundwater samples from the industrial locations and for pH, Pb, Mn, and Fe for residential locations. The elevated concentrations of TDS and EC reported for groundwater samples from industrial locations were attributed to the heavy discharge of effluents from nearby industrial treatment plants as well as the dissolution of ionic heavy metals from industrial activities involving the use of heavy machines. Statistical analysis using Pearson's correlation revealed the physicochemical parameters to be moderately and strongly correlated with one another at either p < .05 or < .01. In conclusion, groundwater samples from residential locations are more suitable for drinking than those from industrial locations.  相似文献   

11.
This study investigates the heavy metal pollution vulnerability of the groundwater in the coastal aquifers of Kalpakkam region in the state of Tamilnadu, India. Integrated-approach includes pollution evaluation indices, principal component analysis (PCA), and correlation matrix (CM) to evaluate the intensity and source of pollution in groundwater. The data have been used for the calculation of heavy metal pollution index (HPI) and degree of contamination (C d). The mean metal levels in groundwater followed a descending order as: Zn?>?Ba?>?Fe?>?Al?>?Se?>?Mn?>?Cu?>?Ni?>?Pb?>?Cr?>?Mo?>?As?>?Cd?>?Sb?>?Be. The concentrations of Fe, Cd, Zn, Se, Ba, Mn, Ni, Pb, and Al in some of the groundwater samples exceed the maximum admissible concentration (MAC). The HPI and C d yield different results despite significant correlations between them. The following elemental associations were obtained from PCA and CM: Fe?CMn?CNi?CCr?CPb?CCd?CZn?CBe?CAl, Cu?CAs, Sb?CAs, Al?CBa and Se?CMo, which could be linked to anthropogenic sources (i.e., processes of tannery and dying industries with some contribution from the landfill leachate and municipal sewage). GIS-based factor score maps suggest that the activities of tannery industries and landfill leachate are pervasive processes in the area. This study has provided the evidence that effluents discharged from the tannery and auxiliary industries and landfill leachate are the main sources of heavy metal pollution in the groundwater. The high metal concentrations observed in the groundwater may have serious public health and potential environmental hazard implications.  相似文献   

12.
Groundwater quality in Iowa varies with depth, location, ownership of well, time of sampling, and geologic features. Samples from deep wells (>30.48 m or 100 ft) are highly mineralized with sulfates and carbonates (calcium and magnesium), whereas the mineral content in samples from shallow wells (<30.48 m or 100 ft) is relatively much lower. Nitrate as a percent of dissolved solids is negligible in samples from deep wells and reaches as high as 3 to 5% in samples from shallow wells. Shallow wells, in particular non-public wells, are highly susceptible to nitrate contamination (with an average concentration of 27.8 mg/l) compared with any other category of wells studied. In shallow non-public wells, the concentration of nitrate from recent geologic deposits (31.61 mg/l) is more than twice the level found in corresponding public wells from similar deposits (13.35 mg/l). Shallow non-public wells are also subject to sharp seasonal fluctuations, with a peak nitrate concentration of 55.81 mg/l in the month of May, possibly because of spring runoff from agricultural and other surface sources. These observations are further supported by the results of nitrate analyses from a large number (over 44,000) of private wells in Iowa. Eighteen percent of these private wells were found to exceed the maximum contaminant level of 45 mg/l nitrate (NO3 ?). A higher proportion of the shallow wells (<30.48 m or 100 ft) exceed the maximum contaminant level of 45 mg/l (3867 out of 13,625 or 28.4%). It is proposed that the observed variability in groundwater quality be used as a first step in developing a strategy for strengthening state-wide groundwater quality monitoring programs. Strong state-wide programs would be of considerable assistance to policy makers in the resolution of major groundwater quality issues.  相似文献   

13.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

14.
2 were sampled in order to verify the impact of these problems on groundwater. All samples were analyzed for major ions, and about 30 of them for fecal coliforms and heavy metals. Nineteen samples were selected for pesticide analyses. The average nitrate content was 80 mg/liter, eight times the regional background value. Fecal coliforms were detected in 60% of the analyzed samples. Zinc content and a high Cl/HCO3 ratio were observed in the surroundings of the solid waste disposal area. Moreover, lindane and heptachlor pesticides were detected in ten samples.  相似文献   

15.
The utilization of water quality analysis to inform optimal decision-making is imperative to achieve sustainable management of river water quality. A multitude of research works in the past has focused on river water quality modeling. Despite being a precise statistical regression technique that allows for fitting separate models for all potential combinations of predictors and selecting the optimal subset model, the application of best subset method in river water quality modeling is not widely adopted. The current research aims to validate the use of best subset method in evaluating the water quality parameters of the Godavari River, one of the largest rivers in India, by developing regression equations for different combinations of its physicochemical parameters. The study involves in formulating best subset regression equations to estimate the concentrations of river water quality parameters while also identifying and quantifying their variations. A total of 17 water quality parameters are analyzed at 13 monitoring sites using 13 years (1993–2005) of observed data for the monsoon (June–October) period and post-monsoon (November–February) period. The final subset model is selected among model combinations that are developed for each year's dataset through widely used statistical criteria such as R2, F value, adjusted R2a, AICc, and RSS. The final best subset model across all parameters exhibits R2 values surpassing 0.8, indicating that the models possess the ability to account for over 80% of the variations in the concentrations of dependent parameters. Therefore, the findings demonstrated the appropriateness of this method in evaluating the water quality parameters in extensive rivers. This work is very useful for decision-making and in the management of river water quality for its sustainable use in the study area.  相似文献   

16.
B2O3 was recovered from waste samples such as borogypsum, reactor waste, boronic sludges, waste mud and concentrator waste by leaching processes using distilled water, sulfur dioxide- and carbon dioxide-saturated water. In the leaching processes, temperature, stirring time and solid-to-liquid ratio were taken as parameters. The amount of B2O3 leached increased with increasing temperature and stirring time and it also increased with decreasing solid-to-liquid ratio, but the increase was less than that recorded for the leaching temperature and the stirring time. SO2 saturated water is a more effective leaching solvent than CO2 saturated water for boronic wastes. By the end of the experiments, more than 90% of B2O3 recovery was found as boric acid. In the leaching of boric acid from boronic wastes in water saturated with sulfur dioxide, it was observed that the leaching rate increases with increasing temperature and leaching time. The overall average values of the kinetic parameters were: apparent activation energy (E) 33.2 kJ mol−1, pre-exponential factor (A) 8.2×109 min−1, reaction order (n) 0.97 and rate constant (k) 3.37×103 min−1 for the leaching processes of the boronic wastes.  相似文献   

17.
ABSTRACT: Runoff and ground-water samples were collected from four ombrotrophic bogs, representing undisturbed and drained/harvested conditions, at two-week intervals during the summer of 1984. Analyses of samples for water quality parameters revealed significant (P < 0.05 level) increases in specific conductance, NH4+-N, total dissolved P, Mg, K, and Na and a decrease in the E4:E6 ratio (suggesting increased proportions of humic acid) associated with drainage. There were no significant changes in dissolved organic carbon, Ca concentrations, or pH. Comparison of samples collected before, during, and after ditching showed increases in the dissolved organic carbon, NH4+-N, total dissolved P, K, and Na and a decrease in the E4:E6 ratio, but these changes were short lived; water quality returned to preditching values after about a week. The observed changes in water quality are small, probably because the peat is very acid (pH 3.0 to 4.5).  相似文献   

18.
Drive point peizometers were installed at the stream–riparian interface in a small urbanizing southern Ontario catchment to measure the effect of buffers (presence/ absence) and land use (urban/agricultural) on the movement of NO? 3-N in shallow groundwater from the riparian area to the stream. Mean NO? 3-N concentrations ranged from 1.0 to 1.3 mg L?1 with maximum values of 9.4 mg L?1. Holding land use constant, there was no significant difference (p>0.05) in NO? 33-N concentration between buffered and unbuffered sites. Nitrate-N levels were not significantly different (p>0.05) as a function of land use. The lack of difference between sites as a function of buffer absence/presence and land use is probably due to the placement of some peizometers in low conductivity materials that limited groundwater flow from the riparian zone to the stream. Subsurface factors controlling the hydraulic gradient are important in defining buffer effectiveness and buffer zones should not be used indiscrim inately as a management tool in urban and agricultural landscapes to control nitrate-N loading in shallow groundwater to streams without detailed knowledge of the hydrogeo logic environment.  相似文献   

19.
Lindehoff, Elin, Edna Granéli, and Patricia M. Glibert, 2010. Influence of Prey and Nutritional Status on the Rate of Nitrogen Uptake by Prymnesium parvum (Haptophyte). Journal of the American Water Resources Association (JAWRA) 46(1):121-132. DOI: 10.1111/j.1752-1688.2009.00396.x Abstract: We studied how the specific nitrogen (N) uptake rates of nitrate (NO3), urea, and the amino acids, glutamic acid and glycine, by Prymnesium parvum were affected by (1) the change from N-deficient status to N-sufficient status of the P. parvum cells, (2) presence of prey from a natural Baltic Sea plankton community, and (3) the composition of prey as affected by additions of terrestrial originated dissolved organic matter (DOM) or inorganic nutrients. Nitrogen-deficient P. parvum (16 μM NO3 and 4 μM PO4, molar N:P ratio of 4:1) were mixed with a natural Baltic plankton community and given PO43− and (1) NO3 (control) or (2) high molecular weight DOM, >1 kDa concentrated from sewage effluent (+DOM), in a molar N:P ratio of 9-10:1. With additions of 15N-enriched substrates, rates of N uptake from NO3, urea, and the amino acids glycine and glutamic acid were measured every 24 h for 72 h. Initial N-deficient P. parvum were highly toxic (3.7 ± 0.9 × 10−4 mg Sap equiv/cell) and toxic allelochemicals were released into the medium causing the natural plankton community to lyse. Rates of N uptake differed between the “control” and the “+DOM” treatments over time; total (sum of the N substrates measured) absolute uptake rates (ρcell, fmol N/cell/h) at ambient culture conditions were significantly higher (ANOVA, p < 0.05) in the more toxic “control” treatments compared with the “+DOM” treatments after 48 h. In the “control” treatment, the total ρcell increased significantly (ANOVA, p < 0.01) from time 0 to 48 h, while in the “+DOM” treatment there was no significant increase. Released organic nutrients from the lysed plankton cells may have increased uptake rates of amino acids and urea by P. parvum. All uptake rates declined in all treatments by 72 h. Total dissolved N uptake rates at ambient culture conditions were estimated to make up about 10% of the N P. parvum are potentially capable of ingesting from particulate prey.  相似文献   

20.
The optimized BCR sequential extraction procedure (proposed by the Standards, Measurements and Testing Programme (SM&T) of the European Union) was applied to seven topsoil samples from refuse dump sites for the determination of Cu, Zn, Ni, Pb and Cd. The metals were partitioned into four operationally defined chemical fractions: acid extractable, reducible, oxidizable and residual, and analysed using flame atomic absorption spectrophotometry, FAAS. The results were compared with total metal concentrations obtained using HNO3, HClO4 and HF digestion procedures. Results for total metal analysis ranged from - 15.55 to 43.45 for Cu, 37.15 to 222.35 for Zn, 5.15 to 12.10 for Ni, 10.30 to 93.05 for Pb and 0.35 to 3.75 for Cd in μgg−1 dry weight. The results of the partitioning study showed that zinc prevailed in the more soluble fractions and was distributed between the acid-extractable (32.4%) and the reducible (40.3%) fractions, whereas Pb was distributed mainly in the reducible fraction. Copper and nickel were predominantly associated with the reducible and residual fractions - 53.4, 33.3 and 51.1, 24.1% respectively. The ranking of the four fractions for the partitioning of cadmium was: reducible > residual > oxidizable > acid extractable. The percentage recovery for all metals when comparing total metal concentration with the fractional sum of the optimized BCR procedure, were of the order: Zn(93%) > Pb(83%) > Cu(78) > Cd > (68%) > Ni(63%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号