首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
ABSTRACT: Buffer strips are undisturbed, naturally vegetated zones around water supply reservoirs and their tributaries that are a recognized and integral aspect of watershed management. These strips can be very effective in protecting the quality of public potable water supply reservoirs by removing sediment and associated pollutants, reducing bank erosion, and displacing activities from the water's edge that represent potential sources of nonpoint source pollutant generation. As part of a comprehensive watershed management protect for the State of New Jersey, a parameter-based buffer strip model was developed for application to all watersheds above water supply intakes or reservoirs. Input requirements for the model include a combination of slope, width, and time of travel. The application of the model to a watershed in New Jersey with a recommended buffer strip width that ranges from 50 to 300 feet, depending upon a number of assumptions, results in from 6 to 13 percent of the watershed above the reservoir being occupied by the buffer.  相似文献   

2.
Arora, Kapil, Steven K. Mickelson, Matthew J. Helmers, and James L. Baker, 2010. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff. Journal of the American Water Resources Association (JAWRA) 46(3):618-647. DOI: 10.1111/j.1752-1688.2010.00438.x Abstract: Review of the published results shows that the retention of the two pesticide carrier phases (runoff volume and sediment mass) influences pesticide mass transport through buffer strips. Data averaged across different studies showed that the buffer strips retained 45% of runoff volume (ranging between 0 and 100%) and 76% of sediment mass (ranging between 2 and 100%). Sorption (soil sorption coefficient, Koc) is one key pesticide property affecting its transport with the two carrier phases through buffer strips. Data from different studies for pesticide mass retention for weakly (Koc < 100), moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged (with ranges) 61 (0-100), 63 (0-100), and 76 (53-100) %, respectively. Because there are more data for runoff volume and sediment mass retention, the average retentions of both carrier phases were used to calculate that the buffer strips would retain 45% of weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis. As pesticide mass retention presented is only an average across several studies with different experimental setups, the application of these results to actual field conditions should be carefully examined.  相似文献   

3.
Effectiveness of grass barriers and vegetative filter strips (FS) for reducing transport of sediment and nutrients in runoff may depend on runoff flow conditions. We assessed the performance of (1) switchgrass (Panicum virgatum L.) barriers (0.7 m) planted above fescue (Festuca arundinacea Schreb.) filter strips under interrill (B-FS) and concentrated flow (CF-B-FS), and (2) fescue alone under interrill (FS) and concentrated flow (CF-FS) for reducing runoff, sediment, nitrogen (N), and phosphorus (P) loss from fallow plots on a Mexico silt loam. We compared exclusively the performance of barriers and filter strips separately under interrill and concentrated flow. Runoff and sediment were sampled at 1 m above and at 0.7, 4, and 8 m below the downslope edge of the sediment source area. Filter strips under interrill flow reduced 80% and those under concentrated flow reduced 72% of sediment at 0.7 m (P < 0.01). With the addition of supplemental runoff simulating runoff from a larger sediment source area, FS reduced 80%, but CF-FS reduced only 60% of sediment. The FS reduced organic N and NO(3)-N by an additional 50% (P < 0.01) more than CF-FS at 0.7 m. Although the effectiveness of both treatments increased with increasing width, CF-FS removed less sediment than FS alone at 8 m (P < 0.04). In contrast, barriers above filter strips under interrill and concentrated flow were equally effective at 8 m; decreasing runoff by 34%, sediment by 99%, and nutrients by 70%. Thus, barriers combined with FS can be an effective alternative to FS alone for sites where concentrated flows may occur.  相似文献   

4.
Sediment is a major agricultural pollutant threatening water quality. Vegetated buffers, including vegetative filter strips, riparian buffers, and grassed waterways, are best management practices (BMPs) installed in many areas to filter sediments from tailwaters, and deter sediment transport to water bodies. Along with reducing sediment transport, the filters also help trap sediment bound nutrients and pesticides. The objectives of this study were: (i) to review vegetated buffer efficacy on sediment trapping, and (ii) to develop statistical models to investigate the major factors influencing sediment trapping. A range of sediment trapping efficacies was found in a review of over 80 representative BMP experiments. A synthesis of the literature regarding the effects of vegetated buffers on sediment trapping is needed. The meta-analysis results based on the limited data showed that buffer width and slope are two major factors influencing BMPs efficacy of vegetated buffers on sediment trapping. Regardless of the area ratio of buffer to agricultural field, a 10 m buffer and a 9% slope optimized the sediment trapping capability of vegetated buffers.  相似文献   

5.
The retention of nutrients in narrow, vegetated riparian buffer strips (VBS) is uncertain and underlying processes are poorly understood. Evidence suggests that buffer soils are poor at retaining dissolved nutrients, especially phosphorus (P), necessitating management actions if P retention is not to be compromised. We sampled 19 buffer strips and adjacent arable field soils. Differences in nutrient retention between buffer and field soils were determined using a combined assay for release of dissolved P, N, and C forms and particulate P. We then explored these differences in relation to changes in soil bulk density (BD), moisture, organic matter by loss on ignition (OM), and altered microbial diversity using molecular fingerprinting (terminal restriction fragment length polymorphism [TRFLP]). Buffer soils had significantly greater soil OM (89% of sites), moisture content (95%), and water-soluble nutrient concentrations for dissolved organic C (80%), dissolved organic N (80%), dissolved organic P (55%), and soluble reactive P (70%). Buffer soils had consistently smaller bulk densities than field soils. Soil fine particle release was generally greater for field than buffer soils. Significantly smaller soil bulk density in buffer soils than in adjacent fields indicated increased porosity and infiltration in buffers. Bacterial, archaeal, and fungal communities showed altered diversity between the buffer and field soils, with significant relationships with soil BD, moisture, OM, and increased solubility of buffer nutrients. Current soil conditions in VBS appear to be leading to potentially enhanced nutrient leaching via increasing solubility of C, N, and P. Manipulating soil microbial conditions (by management of soil moisture, vegetation type, and cover) may provide options for increasing the buffer storage for key nutrients such as P without increasing leaching to adjacent streams.  相似文献   

6.
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.  相似文献   

7.
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

8.
Catchment riparian areas are considered key zones to target mitigation measures aimed at interrupting the movement of diffuse substances from agricultural land to surface waters. Hence, unfertilized buffer strips have become a widely studied and implemented "edge of field" mitigation measure assumed to provide an effective physical barrier against nitrogen (N), phosphorus (P), and sediment transfer. To ease the legislative process, these buffers are often narrow mandatory strips along streams and rivers, across different riparian soil water conditions, between bordering land uses of differing pollution burdens, and without prescribed buffer management. It would be easy to criticize such regulation for not providing the opportunity for riparian ecosystems to maximize their provision for a wider range of ecosystem goods and services. The scientific basis for judging the best course of action in designing and placing buffers to enhance their multifunctionality has slowly increased over the last five years. This collection of papers aims to add to this body of knowledge by giving examples of studies related to riparian buffer management and assessment throughout Europe. This introductory paper summarizes discussion sessions and 13 selected papers from a workshop held in Ballater, UK, highlighting research on riparian buffers brought together under the EU COST Action 869 knowledge exchange program. The themes addressed are (i) evidence of catchment- to national-scale effectiveness, (ii) ecological functioning linking terrestrial and aquatic habitats, (iii) modeling tools for assessment of effectiveness and costs, and (iv) process understanding enabling management and manipulation to enhance pollutant retention in buffers. The combined understanding led us to consider four principle key questions to challenge buffer strip research and policy.  相似文献   

9.
Vegetative filter strips (VFS) have shown promising results in reducing the downstream transport of many agroecosystem contaminants. A recently developed type of VFS, prairie strips, has been shown to significantly reduce the impact of corn and soybean production systems on water quality in terms of sediment, nitrogen, and phosphorus losses. This study assessed potential additional benefits of prairie strips to include the reduction of pathogens. To assess the impact of prairie strips on manure-laden agricultural runoff, we utilized a physical model of prairie strips in a laboratory flume to conduct highly controlled overland flow experiments. Escherichia coli and Enterococcus concentration reductions of up to 45% and 65% were observed for runoff and infiltration flows, respectively, while mass load reductions of up to 65% were observed for surficial runoff flows. The degree of concentration or mass load reductions was dependent on the residence time of the flow within the strip and the partitioning of overland flow running onto the strip to infiltration and runoff flows. Based on our results and a review of the literature, we developed a design method to provide guidance on the width of prairie strip buffer needed to achieve a user-defined reduction of fecal bacteria concentration.  相似文献   

10.
Abstract: It is common practice in the United States and elsewhere to maintain vegetated filter strips adjacent to streams to retain contaminants in surface runoff. Most research has evaluated contaminant retention in managed agricultural field strips, while relatively few studies have quantified retention in forested filter strips, particularly for dissolved contaminants. Plot‐scale overland flow experiments were conducted to evaluate the efficiency of natural forested filter strips established as streamside management zones (SMZs) for retaining phosphorus (P), atrazine, and picloram transported in runoff. Retention was evaluated for five different slope classes: 1‐2, 5‐7, 10‐12, 15‐17, and 20‐22%; two cover conditions: undisturbed forest floor (O horizon intact) and forest floor removed by raking; and two periods with contrasting soil moisture conditions: summer‐dry and winter‐wet season. Surface flow was collected at 0, 2, 4, 6, and 10 m within the filter strip to evaluate changes in solution concentration as it moved through the O horizon and the surface soil horizon mixing zone. On average, a 10 m length of forested SMZ with an undisturbed forest floor reduced initial solution concentration of total dissolved P by 51%, orthophosphate P by 49%, atrazine by 28%, and picloram by 5%. Percentages of mass retention through infiltration of water plus concentration reductions in runoff were 64% for total dissolved P, 62% for orthophosphate P, 47% for atrazine, and 28% for picloram for undisturbed forest floor conditions. Lower retention occurred following forest floor removal, particularly for P. Average dissolved P retention was 16% lower following forest floor removal. For undisturbed sites, differences in retention were more closely related to forest floor depth than to slope or antecedent soil moisture. These results indicate that forested SMZ filter strips provide a significant measure of surface water protection from dissolved P and herbicide delivery to surface water.  相似文献   

11.
Phosphorus removal in vegetated filter strips   总被引:5,自引:0,他引:5  
Vegetated filter strips (VFS) are used recently for removal, at or near the source, of sediment and sediment-bound chemicals from cropland runoff. Vegetation within the flowpath increases water infiltration and decreases water turbulence, thus enhancing pollutant removal by sedimentation within filter media and infiltration through the filter surface. Field experiments have been conducted to examine the efficiency of vegetated filter strips for phosphorus removal from cropland runoff with 20 filters with varying length (2 to 15 m), slope (2.3 and 5%), and vegetated cover, including bare-soil plots as control. Artificial runoff used in this study had an average phosphorus concentration of 2.37 mg L(-1) and a sediment concentration of 2700 mg L(-1). The average phosphorus trapping efficiency of all vegetated filters was 61% and ranged from 31% in a 2-m filter to 89% in a 15-m filter. Filter length has been found to be the predominant factor affecting P trapping in VFS. The rate of inflow, type of vegetation, and density of vegetation coverage had secondary influences on P removal. Short filters (2 and 5 m), which are somewhat effective in sediment removal, are much less effective in P removal. Increasing the filter length beyond 15 m is ineffective in enhancing sediment removal but is expected to further enhance P removal. Sediment deposition, infiltration, and plant adsorption are the primary mechanisms for phosphorus trapping in VFS.  相似文献   

12.
Several approaches can be used to define and construct visual buffer strips around proposed new facility sites in a forested environment. A visual buffer strip of a given value, defines a region around an object within which the probability of an unblocked view of all or portions of it by an observer are less than the buffer strip probability value. Two primary approaches are used to define visual buffer strips that take into account the size of the vegetative elements and their individual effects on visibility. Several variations and combinations of the approaches are possible. One approach defines a visual buffer strip based on the average probability of a clear view of points along the object by an observer; the other approach is based on the visibility of the feature as a whole. The computation and construction of visual buffer strips based on these two concepts are presented. Comparisons of the two approaches for specific feature shapes are also described.  相似文献   

13.
ABSTRACT: A loafing or sacrifice lot is an area located outside of the free stall barn, where a dairy herd spends several hours per day. Sacrifice lots are usually denuded of vegetation and have high concentrations of manure and urine that can contribute significant amounts of sediment, nutrients, and pathogens to nearby surface waters. In this study, stream water quality impacted by direct runoff from a sacrifice lot was monitored for a period of 20 months. Ambient stream water quality was monitored by grab sampling upstream and downstream of the sacrifice lot. During runoff events, stream water quality downstream of the sacrifice lot was monitored with an automatic sampler. Laboratory analyses were conducted for total suspended solids and nutrients (nitrogen and phosphorus compounds). A grass filter strip (GFS) was installed as a buffer downslope of the sacrifice lot 10 months into the study period. The impact of the buffer strip on the standardized pollutant concentrations and loads was evaluated using the non-parametric Wilcoxon test. The Wilcoxon test indicated that there was no significant difference (α= 0.05) in the standardized yield of sediment and dissolved pollutants before and after the GFS installation, except for phosphate-phosphorus and filtered total phosphorus concentrations, and sediment-bound total phosphorus and total kjeldahl nitrogen loads that decreased significantly. However, load decrease could have been partially caused by the smaller rainfall volumes after the GFS installation as compared to the existing condition.  相似文献   

14.
The Tarland Catchment Initiative is a partnership venture between researchers, land managers, regulators, and the local community. Its aims are to improve water quality, promote biodiversity, and increase awareness of catchment management. In this study, the effects of buffer strip installations and remediation of a large septic tank effluent were appraised by water physico-chemistry (suspended solids, NO, NH, soluble reactive P) and stream macroinvertebrate indices used by the Scottish Environmental Protection Agency. It was done during before and after interventions over an 8-yr period using a paired catchment approach. Because macroinvertebrate indices were previously shown to respond negatively to suspended solid concentrations in the study area, the installation of buffer strips along the headwaters was expected to improve macroinvertebrate scores. Although water quality (soluble reactive P, NH) improved downstream of the septic tank effluent after remediation, there was no detectable change in macroinvertebrate scores. Buffer strip installations in the headwaters had no measurable effects (beyond possible weak trends) on water quality or macroinvertebrate scores. Either the buffer strips have so far been ineffective or ineffectiveness of assessment methods and sampling frequency and time lags in recovery prevent us detecting reliable effects. To explain and appreciate these constraints on measuring stream recovery, continuous capacity building with land managers and other stakeholders is essential; otherwise, the feasibility of undertaking sufficient management interventions is likely to be compromised and projects deemed unsuccessful.  相似文献   

15.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

16.
The effectiveness of vegetative buffer strips (VBS) for reducing herbicide transport has not been well documented for runoff prone soils. A multi‐year plot‐scale study was conducted on an eroded claypan soil with the following objectives: (1) assess the effects of buffer width, vegetation, and season on runoff transport of atrazine (ATR), metolachlor (MET), and glyphosate; (2) develop VBS design criteria for herbicides; and (3) compare differences in soil quality among vegetation treatments. Rainfall simulation was used to create uniform antecedent soil water content and to generate runoff. Vegetation treatment and buffer width impacted herbicide loads much more than season. Grass treatments reduced herbicide loads by 19‐28% and sediment loads by 67% compared to the control. Grass treatments increased retention of dissolved‐phase herbicides by both infiltration and adsorption, but adsorption accounted for the greatest proportion of retained herbicide load. This latter finding indicated VBS can be effective on poorly drained soils or when the source to buffer area ratio is high. Grass treatments modestly improved surface soil quality 8‐13 years after establishment, with significant increases in organic C, total N, and ATR and MET sorption compared to continuously tilled control. Herbicide loads as a function of buffer width were well described by first‐order decay models which indicated VBS can provide significant load reductions under anticipated field conditions.  相似文献   

17.
The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to clarify the current scientific foundation of the USDA and similar buffer programs designed in part for water pollution abatement and to highlight important research needs. At this time, research reports are lacking that quantify a change in pollutant amounts (concentration and/or load) in streams or lakes in response to converting portions of cropped land to buffers. Most evidence that such a change should occur is indirect, coming from site-scale studies of individual functions of buffers that act to retain pollutants from runoff: (1) reduce surface runoff from fields, (2) filter surface runoff from fields, (3) filter groundwater runoff from fields, (4) reduce bank erosion, and (5) filter stream water. The term filter is used here to encompass the range of specific processes that act to reduce pollutant amounts in runoff flow. A consensus of experimental research on functions of buffers clearly shows that they can substantially limit sediment runoff from fields, retain sediment and sediment-bound pollutants from surface runoff, and remove nitrate N from groundwater runoff. Less certain is the magnitude of these functions compared to the cultivated crop condition that buffers would replace within the context of buffer installation programs. Other evidence suggests that buffer installation can substantially reduce bank erosion sources of sediment under certain circumstances. Studies have yet to address the degree to which buffer installation can enhance channel processes that remove pollutants from stream flow. Mathematical models offer an alternative way to develop estimates for water quality changes in response to buffer installation. Numerous site conditions and buffer design factors have been identified that can determine the magnitude of each buffer function. Accurate models must be able to account for and integrate these functions and factors over whole watersheds. At this time, only pollutant runoff and surface filtration functions have been modeled to this extent. Capability is increasing as research data is produced, models become more comprehensive, and new techniques provide means to describe variable conditions across watersheds. A great deal of professional judgment is still required to extrapolate current knowledge of buffer functions into broadly accurate estimates of water pollution abatement in response to buffer installation on crop land. Much important research remains to be done to improve this capability. The greatest need is to produce direct quantitative evidence of this response. Such data would confirm the hypothesis and enable direct testing of watershed-scale prediction models as they become available. Further study of individual pollution control functions is also needed, particularly to generate comparative evidence for how much they can be manipulated through buffer installation and management.  相似文献   

18.
The purpose of this research is to study the temporal and spatial sediment delivery to and within the stream network following a wildfire on a chaparral watershed in Arizona, USA. Methods include interpretation of channel processes (aggradation, degradation) from sequential aerial photographs, field measurements of sediment delivery, and overland flow from ten microwatersheds having different vegetation cover (no vegetation, chaparral cover, and bare with vegetation buffer strips). The response of the watershed to the fire was very complex. The fire reduced the chaparral cover to zero in most locations and severe erosion led to filling of the channels by sediment. With vegetation recovery, sediment delivery from the watershed practically ceased. Vegetation buffer strips were mainly responsible for arresting the sediment delivered from bare hillslopes. Relatively clear water, entering the channels, caused degradation in the tributaries that delivered the sediment into the main stream at El Oso Creek. Due to high water infiltration by immense volumes of sediment deposits in the middle reach, the sediment from the tributaries was deposited as in-channel fans. In contrast, the upper reach of El Oso Creek behaved similarly to the tributaries. It aggraded after the fire and was followed by degradation. The low reach of El Oso Creek is degrading because it is still adjusting base level to the incision of the master stream. Implications of this study are that land managers, concerned to avoid severe erosion and sedimentation following disturbance, should concentrate on the establishment and enhancement of vegetation buffer strips along channel banks.  相似文献   

19.
The role of the central government in New Zealand is generally limited to research and policy development, and regional councils are responsible for most monitoring and management of the problem. The role of the federal government in the United States includes research and monitoring, policy development, and regulation. States also have a significant management role. Both countries rely on voluntary approaches for NPS pollution management. Very few national water quality standards exist in New Zealand, whereas standards are widely used in the United States. Loading estimates and modeling are often used in the United States, but not in New Zealand. A wide range of best management practices (BMPs) are used in the United States, including buffer strips and constructed/engineered wetlands. Buffer strips and riparian management have been emphasized and used widely in New Zealand. Many approaches are common to both countries, but management of the problem has only been partly successful. The primary barriers are the inadequacy of the voluntary approach and the lack of scientific tools that are useful to decision-makers. More work needs to be performed on the evaluation of approaches developed in both countries that could be applied in the other countries. In addition, more cooperation and information/technology transfer between the two countries should be encouraged in the future.  相似文献   

20.
/ This review will trace the evolution of beyond boundary/buffer zone thinking and policy responses in the US National Park Service (NPS); address buffer zone science, benefits, and limitations; examine pertinent legal and social concerns; highlight some agency attempts to create buffer zone-like areas; and propose highlights of a protected area strategy, with buffer zones and corridors as one component. Some findings follow. The need to expand national parks to accommodate large ungulate movement began in the late 1800s, but the recognition that such land was also needed to thwart human impacts such as poaching surfaced in the 1930s. External park buffer zone recommendations by 1930s park scientists were not implemented, and other related adopted policy forgotten, supporting the belief that great insight can be discovered in forgotten institutional history. Buffer zones can remedy some impacts but not others, but their benefits are multiple and underappreciated. The science of buffer zones is very immature and deserves more attention. A present primary obstacle to creating park buffer zones and connecting corridors is a social climate opposing federal initiatives that may intrude on the rights of private landowners. Some proactive NPS bufferlike activity examples are reviewed, but there were none where permanent, complete, effective nonlegislated park buffer zones, derived from nonfederal property, circumscribed large natural area parks. The need for buffer zones and corridors may be a symptom of inadequate regional planning. Options to create buffer zones from private and federal land are outlined. A comprehensive, overall protected area strategy must include more than just buffer zones, with highlights provided. Because optimal regional planning for US national parks is now thwarted by land-use politics, American society must soon decide what is most crucial to future well-being. KEY WORDS: Buffer zone; Reserve; Boundary; Policy; Planning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号