首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
秸秆生物型煤走煤能源利用可持续发展之路   总被引:1,自引:0,他引:1  
何建  阎忠斌 《四川环境》1999,18(4):60-63
研究出生物型煤的生产工艺流程和最佳化配方,摸索出生物型煤成型主机的合理运行参数,成功试验生产出新型能源生物型煤,为中国煤能源可持续发展利用开辟了新途径,有助于解决成都地区秸秆燃烧造成大气污染问题。  相似文献   

2.
富营养化水体中的大量藻类对水质和生态系统构成极大威胁,利用生物法控制藻类是一个重要的发展方向。本文综述了利用鱼类、大型水生植物、底栖生物以及微生物等的控藻技术,分析了各项技术的特点和适用范围,并对相关研究进行了展望。  相似文献   

3.
生物吸附剂及其吸附性能研究进展   总被引:11,自引:0,他引:11  
昝逢宇  赵秀兰 《青海环境》2004,14(1):15-18,40
用微生物体来吸附水中的重金属是一项新兴的废水生物处理技术。藻类、细菌、真菌等是生物吸附剂的来源 ,它们对多种重金属都有较好的吸附去除效果。文章从细胞壁的结构特性概述了藻类、细菌、真菌等对重金属吸附的机理 ,介绍了它们的吸附性能  相似文献   

4.
石油污染土壤生物修复技术的研究进展   总被引:1,自引:0,他引:1  
本文综述了30多年来国内外石油污染土壤的生物修复的进展,并介绍了国内外在修复石油污染土壤方面的生物修复工艺:原位生物修复和异位生物修复。原位修复有原位地耕法和土壤气相抽提;异位修复有土壤耕作发、堆放法、堆肥法和反应器法。文章还就今后的研究方向作了阐述,指出生物修复方法作为一种费用低、效果好、对环境影响低、无二次污染的方法,是今后治理石油对土壤污染的最可行的方法。  相似文献   

5.
生物过滤法脱除硫化氢臭气的研究进展   总被引:1,自引:0,他引:1  
兰中仁  余琼  江霞 《四川环境》2007,26(4):83-87
本文综述了污水处理厂硫化氢(H2S)臭气的主要来源以及浓度范围,然后介绍了生物滤池和生物滴滤池的脱臭机理和工艺,并着重介绍了生物过滤反应器所使用的填料,分析了各类生物脱臭填料在应用中的优缺点以及最近的研究动态。接着介绍了生物过滤系统的主要设计和操作参数,系统地总结了不同生物过滤反应器处理H2S的效果,最后指出了生物过滤系统处理H2S臭气面临的技术挑战和发展方向,包括开发新型填料、改善床层酸化等问题。  相似文献   

6.
基于粮食安全的生物能源发展路径   总被引:1,自引:0,他引:1  
由于发展生物能源产业是缓解能源供求矛盾的有效手段,世界许多国家都先后不同程度地开发了生物能源产业。随着生物能源产业的不断发展,当前粮价与石油价格的联动性日益增强,农产品的能源属性日渐显现。作为连通农业和能源的一个新兴产业,生物能源事实上面临着两端约束。生物能源产业的发展,既解决了能源问题,也造成了能源与人争粮,对粮食安全形成了挑战。我们必须在确保粮食安全的前提下关注能源安全,在协调粮食安全的同时寻求发展生物能源路径。  相似文献   

7.
接触氧化污水处理技术的研究现状与展望   总被引:5,自引:0,他引:5  
赖万东  杨卓如 《四川环境》2005,24(1):74-77,101
本文简述了污水处理中生物接触氧化技术的工艺特点及其发展历史,综述了国内外研究及应用现状,为进一步开展该技术的研究和新工艺的开发提供参考。接触氧化技术将是未来我国水处理的主要发展方向之一,文中展望了该技术的一些发展方向。  相似文献   

8.
对微网动态膜生物反应器进行了较为全面的综述,在简要介绍动态膜过滤技术的基础上,对DMBR处理生活污水的运行处理效果、生物动态膜特性、DMBR结构改进及其应用的扩展研究等方面做了介绍,分析了目前该工艺存在的生物动态膜机理研究不透彻、运行稳定性较差、对工业废水的处理研究较少等问题,展望了该工艺的研究方向,即反应器结构的改进、生物动态膜地位与功能的解析、及应器优化控制研究等。  相似文献   

9.
曝气生物滤池填料的研究进展   总被引:2,自引:0,他引:2  
简要介绍了曝气生物滤池的发展,并对国内外曝气生物滤池填料的研究进展分别进行了阐述,指出了未来曝气生物滤池填料的研究方向。  相似文献   

10.
介绍了好氧生物流化床与厌氧生物流化床的研究和应用进展,对近年来出现的几种新型生物流化床的研究进展作了介绍,并展望了生物流化床技术发展方向和应用前景。同时提出了生物流化床在试验研究与应用中尚须解决的问题。  相似文献   

11.
Across the Americas, biofuels production systems are diverse due to geographic conditions, historical patterns of land tenure, different land use patterns, government policy frameworks, and relations between the national state and civil society, all of which shape the role that biofuels play in individual nations. Although many national governments throughout the Americas continue to incentivize growth of the biofuels industry, one key challenge for biofuels sustainability has been concern about its social impacts. In this article, we discuss some of the key social issues and tensions related to the recent expansion of biofuels production in Mexico, Colombia, and Brazil. We argue that a process of “simplification” of ecological and cultural diversity has aided the expansion of the biofuels frontier in these countries, but is also undermining their viability. We consider the ability of governments and non-state actors in multi-stakeholder initiatives (MSI) to address social and environmental concerns that affect rural livelihoods as a result of biofuels expansion. We analyze the tensions between global sustainability standards, national level policies for biofuels development, and local level impacts and visions of sustainability. We find that both government and MSI efforts to address sustainability concerns have limited impact, and recommend greater incorporation of local needs and expertise to improve governance.  相似文献   

12.
A noticeable push toward using agricultural crops for ethanol production and for undertaking research to expand the range of possible biofuels began to dominate discussions of agricultural science and policy in the United States around 2005. This paper proposes two complementary philosophical approaches to examining the philosophical questions that should be posed in connection with this turn of events. One stresses a critique of underlying epistemological commitments in the scientific models being developed to determine the feasibility of various biofuels proposals. The second begins with a broader set of questions about the philosophical goals of agriculture, then queries the place that a turn to biofuels might have within the philosophy of agriculture. Both are portrayed as viable and important. The paper itself is a preliminary stage-setting reflection on the need for these two types of philosophical inquiry.  相似文献   

13.
The preparation of sodium methoxide-treated algae catalysts and their activity in the transesterification of Pongamia pinnata seed oil by dimethyl carbonate were investigated. We also investigated the effect of the sodium methoxide-treated algae catalyst on the biodiesel yield. The development of sodium methoxide-treated algae catalysts can overcome most problems associated with dissolution in dimethyl carbonate. The products were analyzed using gas chromatography-mass spectroscopy to identify the fatty acid methyl esters in the biodiesel produced. The molar ratio of Pongamia pinnata seed oil to dimethyl carbonate in transesterification in the presence of the sodium methoxide-treated algae catalyst was observed to play a substantial role in this study, wherein the Pongamia pinnata seed oil conversion increased with increasing catalyst concentration. The highest percent conversion rate was 97%. With intense research focus and development, an ideal catalyst can indeed be developed for optimal biodiesel production that is both economically feasible and environmentally benign.  相似文献   

14.
The increasing demand of renewable energy sources has pressed the need to search for biofuels. The world is not only thrusting for potential sources of biofuels but also surveilling not to hamper the food supply, particularly in the Third World countries, such as Bangladesh. Rice bran oil is a prominent source of biofuels. Rice, the main cereal in Bangladesh, is cultivated all the year round. Rice hull containing bran is mostly wasted and merely used as feedstock for cattle and for cooking purposes. This study considered rice bran as a prospective source of biodiesel in Bangladesh. The properties of oil collected from rice bran were investigated to ensure the production of biodiesel by transesterification. An economic analysis relative to Bangladesh was conducted, and the production rate of biodiesel under different percentage of catalyst was investigated.  相似文献   

15.
Elcock, Deborah, 2010. Future U.S. Water Consumption: The Role of Energy Production. Journal of the American Water Resources Association (JAWRA) 46(3):447-460. DOI: 10.1111/j.1752-1688.2009.00413.x Abstract: This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.  相似文献   

16.
The past few years have seen a phenomenal rise in the production and consumption of biofuels and biodiesel at the global level. This development is of special significance to Africa, where about 550 million people (75% of the total population in Sub‐Saharan Africa) depend on traditional biomass (wood, charcoal, cow dung, etc.) and lack access to electricity or any kind of modern energy service. Derived from plants and agricultural crops, biofuels and biodiesel represent modern forms of bioenergy and more efficient use of biomass energy. Beyond efficiency, modern bioenergy offers tremendous opportunities to meet growing household energy demands, increase income, reduce poverty, and mitigate environmental degradation. In the African setting, energy and livelihoods security are indeed inseparable. This paper argues economic, social, and environmental benefits of modern bioenergy can be realized through a strategy that centres on smallholder production and processing schemes and pursuit of a livelihood approach to energy development. Such a scheme opens up new domestic markets, generates new cash incomes, improves social wellbeing, enhances new technology adoption, and lays the ground for rural economic transformation and sustainable land use. The paper concludes by underlining the vital importance of considering sound property rights and strategic planning of sustainable development as tools for sustainable energy and livelihoods security.  相似文献   

17.
Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.  相似文献   

18.
生物燃料与西部开发   总被引:2,自引:0,他引:2  
傅尧信 《四川环境》2001,20(1):55-57
本文介绍了生物燃料的概况,对国家战略安全,环境保护和区域经济发展的意义,以及技术和应用可行性,把四川建成中国生物燃料的基地。  相似文献   

19.
新安江水库是钱塘江的重要水源,对保障钱塘江中下游的生态安全和水体功能起着举足轻重的作用。为阐明新安江水库在流域经济发展和人类活动的影响下水环境的主要问题及保护对策,促进饮用水安全保障及构建健康水域生态系统,本文对新安江水库历年的水环境指标、浮游生物群落结构及其变化及水域生态灾变事件资料进行了综合分析。目前新安江水库存在上游来水变差、局部水域藻类异常增殖、渔业生产不合理、营养程度加重等众多问题,但其突出问题是藻类生物量增长过快。新安江水库水环境保护工作要从关注水质向维持生态系统健康转变,并尽快开展生态保育工作,控制流域污染、降低藻类数量、减少藻类异常增殖影响、科学合理渔业生产是其下一步保护的关键。而关于新安江水库的研究,虽然有一定的研究基础和资料,但对水域生态系统缺乏系统认识。研究气候变化条件下新安江水库水域生态系统的结构和功能以及长期演变规律;水利调度导致水位调整对区域水动力学条件、营养物输送过程的影响及评价水利调度对水库重要环境因子和生态系统影响;渔业养殖对水环境的影响,特别是鲢、鳙鱼大水面积养殖对水库生态系统的影响应是今后新安江水库主要的研究领域和方向。  相似文献   

20.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号