首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Pervious concrete typically has an infiltration rate far exceeding any expectation of precipitation rate. The limiting factor of a retention based pervious concrete system is often defined by how quickly the underlying soil subgrade will infiltrate the water temporarily stored within the concrete and/or aggregate base. This issue is of particular importance when placing a pervious concrete system on compacted fine textured soils. This research describes the exfiltration from twelve pervious concrete plots constructed on a compacted clay soil in eastern Tennessee, USA. Several types of treatments were applied to the clay soil prior to placement of the stone aggregate base and pervious concrete in an attempt to increase the exfiltration rate, including: 1) control – no treatment; 2) trenched – soil trenched and backfilled with stone aggregate; 3) ripped – soil ripped with a subsoiler; and 4) boreholes – placement of shallow boreholes backfilled with sand. The average exfiltration rates were 0.8 cm d−1 (control), 4.6 cm d−1 (borehole), 10.0 cm d−1 (ripped), and 25.8 cm d−1 (trenched). The trenched treatment exfiltrated fastest, followed by the ripped and then the borehole treatments, although the ripped and borehole treatments were not different from one another at the 5% level of significance. The internal temperature of the pervious concrete and aggregate base was monitored throughout the winter of 2006–2007. Although the temperature of the pervious concrete dropped below freezing 24 times, freezing concrete temperatures never coincided with free water being present in the large pervious concrete pores. The coldest recorded air temperature was −9.9 °C, and the corresponding coldest recorded pervious concrete temperature was −7.1 °C. The temperature of the pervious concrete lagged diurnal air temperature changes and was generally buffered in amplitude, particularly when free water was present since the addition of water increases the thermal capacity of the pervious concrete greatly. The temperature of the aggregate base was further buffered to diurnal changes, and no freezing temperatures were recorded.  相似文献   

2.
Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000 tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4 mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.  相似文献   

3.
In this study, we investigated the feasibility of using sludge water from a ready-mixed concrete plant as mixing water in concrete containing either fly ash as an additive or a superplasticizer admixture based on sulfonated naphthalene-formaldehyde condensates (SNF). The chemical and physical properties of the sludge water and the dry sludge were investigated. Cement pastes were mixed using sludge water containing various levels of total solids content (0.5, 2.5, 5, 7.5, 10, 12.5, and 15%) in order to determine the optimum content in the sludge water. Increasing the total solids content beyond 5–6% tended to reduce the compressive strength and shorten the setting time. Concrete mixes were then prepared using sludge water containing 5–6% total solids content. The concrete samples were evaluated with regard to water required, setting time, slump, compressive strength, permeability, and resistance to acid attack. The use of sludge water in the concrete mix tended to reduce the effect of both fly ash and superplasticizer. Sludge water with a total solids content of less than 6% is suitable for use in the production of concrete with acceptable strength and durability.  相似文献   

4.
In our previous work, the prepared high-impact polystyrene (HIPS) membranes, synthesized using four concentrations (20, 25, 30, and 35 wt%) of waste HIPS, were proved to be promising for water purification by microfiltration process (MF). However, the fabricated membranes' mechanical properties and microfiltration process parameters were not investigated. Consequently, in this study, various parameters affecting the previously fabricated membranes' performance in the filtration process, such as membrane mechanical properties, feeding pressure, fouling behavior, and polymer concentration, were thoroughly investigated. With increasing polystyrene concentrations, the ultimate tensile strength of the fabricated membranes increased. When the concentration was increased from 20 to 25 wt percent, the elongation at break rose, but as the concentration was increased further, the membrane became brittle. Permeate flux and rejection both declined as polymer content was raised. Accordingly, the highest flux and humic acid (HA) rejection were shown by 20 wt% (14.18 L/m2h (LMH) and 98.95%, respectively). The antifouling properties declined when the polymer concentration was raised, and 20 wt% had the lowest total fouling resistance. Furthermore, the permeate flux was reduced while increasing the HA initial concentration.  相似文献   

5.
With the onset of social life, humans have considered waste disposal as essential, and they have been able to repel it through brick and clay channels. Checking sewage pipes for energy consumption and a longer lifetime than other sewage system components is important. Climate change and exploitation of industrial resources have made environmental impacts, which are important factors in decision making. The purpose of this study was to introduce the most suitable type of sewage pipe considering environmental protection. Therefore, we applied the environmental life cycle assessment (LCA) method, using Sima Pro 8.2.3 software for the one-kilometer length of concrete pipes (300 mm in diameter), Polyvinyl chloride (PVC), and polyethylene (PE) (315 mm in diameter). Also, the BEES method and sensitivity analysis were used to validate the results. The comparison between three types of municipal wastewater pipes indicated that PE pipes are a more environmentally friendly option than PVC, and concrete pipes in pipe recycling, reducing extraction from untapped resources, and inefficient extraction of resources. Electricity, diesel fuel, and sulfate resistance cement consumption for concrete production are the most pollution elements in the LCA of concrete pipes. Usage of PVC granular, sanitary landfill of PVC pipes, and using hydraulic drill in LCA of PVC pipes are the most elements of generating pollution. The usage of PE granules, PE pipes landfilling, hydraulic excavator, and electricity consumption in the LCA of the PE pipes are the greatest polluting parameters.  相似文献   

6.
Leachate metal pollutant concentrations produced from different asphalt and concrete pavement surfacing materials were measured under controlled laboratory conditions. The results showed that, in general, the concentrations of most metal pollutants were below the reporting limits. However, dissolved chromium was detected in leachate from concrete (but not asphalt) specimens and more strongly in the early-time leachate samples. As the leaching continued, the concentration of Cr decreased to below or close to the reporting limit. The source of the chromium in concrete pavement was found to be cement. The concentration of total Cr produced from leachate of different cement coming from different sources that was purchased from retail distributors ranged from 124 to 641 μg/L. This result indicates that the potential leachability of dissolved Cr from concrete pavement materials can be reduced through source control. The results also showed that the leachability of dissolved Cr in hardened pavement materials was substantially reduced. For example, the concentration of dissolved Cr measured in actual highway runoff was found to be much lower than the Cr concentration produced from leachate of both open and dense graded concrete pavement specimens under controlled laboratory study. It was concluded that pavement materials are not the source of pollutants of concern in roadway runoff; rather most pollutants in roadway surface runoff are generated from other road-use or land-use sources, or from (wet or dry) atmospheric deposition.  相似文献   

7.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

8.
Solid waste presents the potential for contamination of the soil when it is improperly managed. One of the great challenges of today's society is to promote the proper disposal of municipal solid waste in order to guarantee the safety of public health and to avoid risks to the environment. In this context, the objective of this study is to analyze the concentration profiles of heavy metals and aromatic hydrocarbons of risk that human health in landfill soil. Such works provides an important tool to evaluate the possible presence of contaminants from inappropriate waste disposal, as well as to assist in the management of waste and to prevent environmental contamination. In order to analyze cadmium (Cd), lead (Pb), nickel (Ni), arsenic (As), and mercury (Hg), which are toxic elements, and aromatic hydrocarbons, including benzene, toluene, ethylbenzene, o‐xylene, m‐xylene, and p‐xylene, soil samples were collected at different sites and depths. Neither Cd nor As was detected in any of the samples that were analyzed. Pb levels ranged from 5.34 milligrams per kilograms (mg/kg) to 7.40 mg/kg, Ni levels ranged from 2.17 mg/kg to 3.00 mg/kg, and Hg levels ranged from 75.4 micrograms per kilograms (μg/kg) to 88.3 μg/kg. The aromatic hydrocarbon compounds of benzene, toluene, ethylbenzene, and o‐xylene were below 5.5 μg/kg, and m‐, p‐xylene was below 11 μg/kg. The analysis of heavy metals and aromatic hydrocarbons present in the landfill soil showed concentrations below the soil quality guideline values of the Brazilian National Environment Council (CONAMA) Resolution 420, which has criteria for the presence of chemical substances in soil for Brazil. Therefore, the low levels of chemicals may be related to the operational time of the landfill or to the population profile of the municipality, which is predominantly composed of persons involved in family‐based agriculture.  相似文献   

9.
Two sets of experiments on typical Class G well cement were carried out in the laboratory to understand better the potential processes involved in well leakage in the presence of CO2. In the first set, good-quality cement samples of permeability in the order of 0.1 μD (10?19 m2) were subjected to 90 days of flow through with CO2-saturated brine at conditions of pressure, temperature and water salinity characteristic of a typical geological sequestration zone. Cement permeability dropped rapidly at the beginning of the experiment and remained almost constant thereafter, most likely mainly as a result of CO2 exsolution from the saturated brine due to the pressure drop along the flow path which led to multi-phase flow, relative-permeability effects and the observed reduction in permeability. These processes are identical to those which would occur in the field as well if the cement sheath in the wellbore annulus is of good quality. The second set of experiments, carried out also at in situ conditions and using ethane rather than CO2 to eliminate any possible geochemical effects, assessed the effect of annular spaces between wellbore casing and cement, and of radial cracks in cement on the effective permeability of the casing-cement assemblage. The results show that, if both the cement and the bond are of good quality, the effective permeability of the assemblage is extremely low (in the order of 1 nD, or 10?21 m2). The presence of an annular gap and/or cracks in the order of 0.01–0.3 mm in aperture leads to a significant increase in effective permeability, which reaches values in the range of 0.1–1 mD (10?15 m2). The results of both sets of experiments suggest that good cement and good bonding with casing and the surrounding rock will likely constitute a good and reliable barrier to the upward flow of CO2 and/or CO2-saturated brine. The presence of mechanical defects such as gaps in bonding between the casing or the formation, or cracks in the cement annulus itself, leads to flow paths with significant effective permeability. This indicates that the external and internal interfaces of cements in wells would most probably constitute the main flow pathways for fluids leakage in wellbores, including both gaseous/supercritical phase CO2 and CO2-saturated brine.  相似文献   

10.
In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management.  相似文献   

11.
Activated fly ash/slag blended cement   总被引:2,自引:0,他引:2  
This paper presents the results of the preparation of an ecological cementing material from granulated blast-furnace slag (GBFS) and Class C fly ash (CCFA). The desulphurization gypsum, calcined at 600–800 °C for 0.5–1.5 h, works as the main ingredient of the activator in the cementing material. The optimized formulation of the cementing material was obtained with the aid of factorial design method: slag, 70%; CCFA, 18%; activator, 12%. The “partial super-fine grinding process” was adopted to improve the performance, i.e., 85% of the mixture is ground to Blaine fineness of 3500 cm2/g, 15% further ground to around 5000 cm2/g. The compressive strength of 28 days of the cement mortar is up to 49 MPa and flexural strength 8.4 MPa. The hydration products, investigated by SEM and X-ray diffraction, are mainly ettringite and C–S–H gel.  相似文献   

12.
The effects of nano-SiO2 on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO2 was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash–cement mortar increased as more nano-SiO2 was added. Additionally, with 2% nano-SiO2 added and a cure length of 7 days, the compressive strength of the ash–cement mortar with 1 μm ash particle size was about 1.5 times better that of 75 μm particle size. Further, nano-SiO2 functioned to fill pores for ash–cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO2 better influenced the ash–cement mortar with larger ash particle sizes.  相似文献   

13.
Durability of conventional concretes containing black rice husk ash   总被引:1,自引:0,他引:1  
In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water–binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H2SO4) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water–binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO2 + Al2O3 + Fe2O3)/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete.  相似文献   

14.
The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 × 5 × 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions – 50% of [waste + (120 g Ca(OCl)2 + 290 g Na2SO4) kg?1 of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF.  相似文献   

15.
The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture.  相似文献   

16.
A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2-bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2-bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2-bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 °C, with complete regeneration occurring at 100 °C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed.  相似文献   

17.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

18.
Two free water surface (FWS) and two subsurface flow (SSF) pilot-size wetlands were constructed for the evaluation of their performance in treating highway runoff (HRO) in the heart of the Mediterranean region, the island of Crete, at the southernmost point of Greece. Detailed recordings of the resources involved during the construction allowed a thorough calculation of the cost of the systems and the requirements in materials, man-hours, and equipment. The two identical FWS systems had a surface area of 33 m2 each, while the two identical SSF covered 32 m2 each. One FWS and one SSF, named FWS12 and SSF12, respectively, were designed with a hydraulic retention time (HRT) of 12 h, with each one capable of treating a maximum HRO of 12.6 m3/day. The other couple, named FWS24 and SSF24, respectively, was designed with an HRT of 24 h, with each receiving a maximum HRO of 6.3 m3/days. An influent storage tank was required to hold the runoff during the common storm events and control the flow rate (and the hydraulic retention time) into the wetlands. This construction represented 25% of the total construction cost, while 5% was spent on the influent automated (and sun-powered) control and distribution system, from the storage tank to the wetlands. The respective total cost allocated to the two SSF systems (€14,676) was approximately 10% higher than that of the FWS (€13,596), mainly due to the three different-sized gravel layers used in the SSF substrate compared to the topsoil used in the FWS, which tripled the cost and placement time. The Total Annual Economic Cost (TAEC) was €1799/year and €1847/year for the FWS and SSF pair, respectively. TAEC was also used to compare the economic efficiency of the systems per cubic meter of HRO treated and kilograms of COD and TSS removed from the wetlands during their first operational year. Based on these estimations, FWS12 recorded the lowest TAECCOD and TAECTSS values (€89.09/kg and €43.69/kg, respectively) compared to the other three systems, presenting a more economically favorable option.  相似文献   

19.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

20.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号