首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes and applies EDEN-E, an operational method for the environmental evaluation of dairy farms based on the life cycle assessment (LCA) conceptual framework. EDEN-E requires a modest amount of data readily available on-farm, and thus can be used to assess a large number of farms at a reasonable cost. EDEN-E estimates farm resource use and pollutant emissions mostly at the farm scale, based on-farm-gate balances, amongst others. Resource use and emissions are interpreted in terms of potential impacts: eutrophication, acidification, climate change, terrestrial toxicity, non-renewable energy use and land occupation. The method distinguishes for each total impact a direct component (impacts on the farm site) and an indirect component (impacts associated with production and supply of inputs used). A group of 47 dairy farms (41 conventional and six organic) was evaluated. Expressed per 1000 kg of fat-and-protein-corrected milk, total land occupation was significantly larger for organic than for conventional farms, while total impacts for eutrophication, acidification, climate change, terrestrial toxicity, and non-renewable energy use were not significantly different for the two production modes. When expressed per ha of land occupied all total impacts were significantly larger for conventional than organic farms. This study largely confirms previously published findings concerning the effect of production mode on impacts of dairy farms. However, it strikingly reveals that, for the set of farms examined, the contribution of production mode to overall inter-farm variability of impacts was minor relative to inter-farm variability within each of the two production modes examined. The mapping of impact variability through EDEN-E opens promising perspectives to move towards sustainable farming systems by identifying the structural and management characteristics of the farms presenting the lowest impacts.  相似文献   

2.
Slurry management is a central topic in the agronomic and environmental analysis of intensive livestock production systems. The objective of this study is to compare the environmental performance of two scenarios of collective slurry management for the disposal of excess nitrogen from animal manure. The scenarios are the transfer of slurry and its injection to crop land, and the treatment of slurry in a collective biological treatment station. The study is based on a real case in the West of France, where a group of farmers is developing a collective plan for the disposal of almost 7000 m(3) of excess pig slurry. The evaluation is carried out by Life Cycle Assessment, where emissions and resource consumption are quantified and aggregated into four environmental impact categories: eutrophication, acidification, climate change, and non-renewable energy use. Ammonia emitted is the most important contributor to acidification and eutrophication, while methane contributes most to climate change. Both ammonia and methane are mostly emitted during the storage of slurry and, in the case of the treatment scenario, also during composting the solid fraction of the slurry. The two management strategies are similar with respect to climate change, whereas eutrophication and acidification are twice as large for treatment relative to transfer. Electricity needed for the treatment process is the main contributor to non-renewable energy use for the treatment scenario, while the transfer scenario represents a net energy saving, as energy saved by the reduction of mineral fertiliser use more than compensates for the energy needed for transport and injection of slurry. The overall environmental performance of transfer is better than that of treatment, as it involves less acidification, eutrophication and non-renewable energy use. The method employed and the results obtained in this study can provide elements for a transparent discussion of the advantages and disadvantages of contrasting excess slurry management scenarios as well as the identification of the main aspects determining their environmental performance.  相似文献   

3.
This study presents the contributions of materials, earth engineering machines and construction techniques to potential environmental impacts from the main items of typical road earthworks. To achieve this goal, the overall activity at a 1.9-km long French earthworks project site for a heavily trafficked highway was surveyed during its 2007–2009 construction period. Using data collected and a numerical model of road life cycle assessment (LCA), i.e. ECORCE, six indicators could be evaluated, namely: energy consumption, global warming potential, acidification, eutrophication, photochemical ozone creation, and human chronic toxicity. When available, several life cycle inventories were implemented in order to appraise indicator sensitivity with respect to the considered panel of pollutants. Results also allowed estimating from an LCA point of view: (i) the conservation of both aggregates and soil as induced by quicklime treatment and (ii) the duration necessary for projected traffic levels to offset the potential environmental impacts of the earthworks stage.  相似文献   

4.
Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides and electricity. The expansion of this crop in Brazil in recent decades has generated concerns about its environmental impacts. To assess these impacts, two representative chains supplying soybeans to Europe were identified: Center West (CW) and Southern (SO) Brazil. Each supply chain was analyzed using Life Cycle Assessment methodology. We considered different levels of use of chemical and organic fertilizers, pesticides and machinery, different distances for transportation of inputs and different yield levels. Because transportation contributed strongly to environmental impacts, a detailed study was performed to identify the routes used to transport soybeans to seaports. Additionally, we considered different levels of land occupation and land transformation to represent the impact of deforestation in the CW region. Environmental impacts were calculated for 1000 kg of soybean up to and including the delivery to Europe at the seaport in Rotterdam, at 13% humidity. Overall results showed that the impacts are greater for CW than for SO for all impact categories studied, including acidification (7.7 and 5.3 kg SO2 eq., respectively), climate change (959 and 510 kg CO2 eq.), cumulative energy demand (12,634 and 6,999 MJ) and terrestrial ecotoxicity (4.9 and 3.1 kg 1,4-DCB eq.), except eutrophication and land occupation. The same trend was observed for the crop-production stage. Efforts to reduce chemical fertilizers and diesel consumption can reduce CO2 emissions. Although deforestation for crop production has decreased in recent years, the contribution of deforestation to climate change and cumulative energy demand remains significant. In the CW scenario deforestation contributed 29% to climate change and 20% to cumulative energy demand. Results also showed that although there are different transportation options in Brazil, the current predominance of road transport causes severe environmental impacts. In CW, road transport contributed 19% to climate change and 24% to cumulative energy demand, while in SO it contributed 12% and 15% to these impacts, respectively. Improvements in the logistics of transportation, giving priority to rail and river transports over road transport, can contribute significantly to reducing greenhouse gas emissions and decreasing energy use. Future studies involving Brazilian soybeans should take into account the region of origin as different levels of environmental impact are predicted.  相似文献   

5.
A Life Cycle Assessment (LCA) of two home composts with low and high gaseous emissions of the composting process is presented. The study focused on the gaseous emissions of the composting process. Gaseous emissions of methane, nitrous oxides, ammonia and volatic organic compounds of the composting process were experimentally measured in field real trials. The results showed that the differences in gaseous emissions between the two home composts were 4.5, 5.8 and 52 for methane, nitrous oxides and ammonia, respectively. Higher emissions of nitrous oxides and methane affected significantly the category of global warming potential, while higher emissions of ammonia affected mainly the categories of acidification potential, eutrophication potential and photochemical oxidation. The differences found in the compost emissions were attributable to the composting production management (quality and composition of waste stream, frequency mixing of waste, humidity and temperature monitoring, among others) as well as weather conditions (temperature and humidity).  相似文献   

6.
7.
Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.  相似文献   

8.
In this article, we present a life cycle assessment (LCA) of CO2 capture and storage (CCS) for several lignite power plant technologies. The LCA includes post-combustion, pre-combustion and oxyfuel capture processes as well as subsequent pipeline transport and storage of the separated CO2 in a depleted gas field.The results show an increase in cumulative energy demand and a substantial decrease in greenhouse gas (GHG) emissions for all CO2 capture approaches in comparison with power plants without CCS, assuming negligible leakage within the time horizon under consideration. Leakage will, however, not be zero. Due to the energy penalty, CCS leads to additional production of CO2. However, the CO2 emissions occur at a much lower rate and are significantly delayed, thus leading to different, and most likely smaller, impacts compared to the no-sequestration case. In addition, a certain share of the CO2 will be captured permanently due to chemical reactions and physical trapping.For other environmental impact categories, the results depend strongly on the chosen technology and the details of the process. The post-combustion approach, which is closest to commercial application, leads to sharp increases in many categories of impacts, with the impacts in only one category, acidification, reduced. In comparison with a conventional power plant, the pre-combustion approach results in decreased impact in all categories. This is mainly due to the different power generation process (IGCC) which is coupled with the pre-combustion technology.In the case of the oxyfuel approach, the outcome of the LCA depends highly on two uncertain parameters: the energy demand for air separation and the feasibility of co-capture of pollutants other than CO2. If co-capture were possible, oxyfuel could lead to a near-zero emission power plant.  相似文献   

9.
Concerns over non-renewable fossil fuel supply and climate change have been driving the Renaissance of bio-based materials. To substantiate environmental claims, the impacts of bio-based materials are typically quantified by applying life cycle assessment (LCA). The internationally agreed LCA standards provide generic recommendations on how to evaluate the environmental impacts of products and services but do not address details that are specifically relevant for the life cycles of bio-based materials. Here, we provide an overview of key issues and methodologies explicitly pertinent to the LCA of bio-based materials. We argue that the treatment of biogenic carbon storage is critical for quantifying the greenhouse gas emissions of bio-based materials in comparison with petrochemical materials. We acknowledge that biogenic carbon storage remains controversial but recommend accounting for it, depending on product-specific life cycles and the likely time duration of carbon storage. If carbon storage is considered, co-product allocation is nontrivial and should be chosen with care in order to: (i) ensure that carbon storage is assigned to the main product and the co-product(s) in the intended manner and (ii) avoid double counting of stored carbon in the main product and once more in the co-product(s). Land-use change, soil degradation, water use, and impacts on soil carbon stocks and biodiversity are important aspects that have recently received attention. We explain various approaches to account for these and conclude that substantial methodological progress is necessary, which is however hampered by the complex and often case- and site-specific nature of impacts. With the exception of soil degradation, we recommend preliminary approaches for including these impacts in the LCA of bio-based materials. The use of attributional versus consequential LCA approaches is particularly relevant in the context of bio-based materials. We conclude that it is more challenging to prepare accurate consequential LCA studies, especially because these should account for future developments and secondary impacts around bio-based materials which are often difficult to anticipate and quantify. Although hampered by complexity and limited data availability, the application of the proposed approaches to the extent possible would allow obtaining a more comprehensive insight into the environmental impacts of the production, use, and disposal of bio-based materials.  相似文献   

10.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

11.
Every year 90 million tonnes of housed livestock manures are produced in the UK. This is a valuable reservoir of global phosphorus (P) and a point in the cycle where it is vulnerable to being lost from the terrestrial system. Improved manure management for the effective reuse of phosphorus is vital to simultaneously tackle a major source of water pollution and reduce our dependence on imported fertilisers. This paper quantifies, for the first time, the spatial and temporal challenges of recycling the required amount of manure P from areas of livestock production to areas of crop production in eight regions of England. The analysis shows that England has a P deficit and therefore the capacity to fully utilise the manure P on arable land, but that uneven spatial distribution of livestock poses a significant challenge to closing the P loop in agriculture. Two of the eight regions were shown to have surplus manure P, with the remaining six regions having P deficits, indicating that an annual export of 4.7 thousand tonnes P (2.8 million tonnes manure) must take place from the west to the east of the country each year to balance P supply and demand. Moreover, housed manure production peaks between October and February, requiring an excess of 23.0 thousand tonnes P (15 million tonnes manure) to be stored until it can be used for crop fertilisation from March onwards. The results demonstrate the scale of the challenge in managing manure P in an agricultural system that has separated livestock production from crop production, a pattern that is echoed throughout the developed world. To overcome the spatial and temporal challenges, a logistical system is recommended that will balance the nutrient potential (nitrogen and P content and availability) and pollution potential (eutrophication, greenhouse gas emissions, particulates and nitrous oxide from transport) for cost-effective and environmentally compatible redistribution of manure P from areas of surplus to areas of deficit, when required.  相似文献   

12.
This paper estimates the environmental impacts and damage costs (‘external costs’) of synthetic nitrogen fertilizer and discusses options for reducing these impacts, including their consequences for farmers and for producers of fertilizer. The damage costs of the fertilizer life cycle that could be estimated are large, about 0.3 [euro]/kgN (compared to the current market price of about 0.5 [euro]/kgN); much of that is due to global warming by N2O and CO2 emissions during fertilizer production and N2O emissions from fertilized fields. Policy options for internalizing these costs are discussed, and the consequences of reduced fertilizer input on crop yield are explored. If the damage costs were internalized by a pollution tax or tradable permits that are auctioned by the government, the economic consequences would be heavy, with a large revenue loss for farmers. However, if it is internalized by tradable permits that are given out free, the revenue loss for farmers is small. The loss for fertilizer producers increases linearly with the amount of external cost that is internalized, by contrast to the loss for farmers which increases quadratically but is very small for a damage cost of 0.3 [euro]/kgN. Expressed as a change in the fertilizer-dependent part of the farmers' revenue (crop yield × crop price – fertilizer used× fertilizer price), the decrease is less than 0.5% for most crops; the losses are larger only for crops with low [euro]/ha revenue. Averaged over wheat, barley, potatoes, sugar beet and rapeseed, the loss to farmers is about 0.1% in the UK and 0.4% in Sweden. The revenue loss for fertilizer producers is larger, about 8% in the UK and 14% in Sweden.  相似文献   

13.
One of the techniques used to dispose of 4,000 tons per day (TPD) of non‐recyclable waste from Tehran is to burn it as an alternative fuel in cement kilns. This practice reduces emissions from landfills, prevents the loss of waste energy, and conserves fossil fuel resources. The aim of our study was to conduct a life cycle assessment (LCA) of clinker production in cement kilns using a combination of natural gas, mazut, a form of heavy, low‐quality fuel oil, and refuse‐derived fuel (RDF) from Tehran. We used SimaPro 7.1 software to perform an LCA of 1 kilogram (kg) of clinker produced using the following fuel combinations: the first scenario involved natural gas consumption alone, the second scenario involved a combination of natural gas and mazut, with the mazut providing 5% to 30% of the heating value needed to produce cement clinker in the kiln, and the third scenario involved a combination of natural gas and RDF (providing 5% to 30% of the heating needed in the kiln). The impact categories in the LCA of global warming, eutrophication, and acidification were assessed by the Center of Environmental Science of Leiden University (Centrum voor Milieukunde Leiden—CML) CML 2000 method. The results indicated that the third scenario, involving natural gas and RDF, reduced acidification by 2.14–11.5% and global warming by 0–1.3% relative to the first scenario involving the use of only natural gas. In addition, we observed a 0.65–3.81% reduction in acidification and a 0.9–3.8% reduction in global warming under the third scenario compared with the second scenario (co‐firing of natural gas and mazut). The amount of nitrogen oxides (NOX) emitted from the combustion of the Tehran RDF was greater than that was emitted when burning mazut. Therefore, reduction of nitrogen from the RDF composition is necessary. This study indicates that the use of Tehran RDF (with reduced nitrogen) in Tehran cement kilns does not increase cement kiln NOX, sulfur dioxide (SO2), and carbon dioxide (CO2) emissions; however, we need to conduct additional investigation into the chemical composition of the Tehran waste before using solid waste in place of fossil fuels.  相似文献   

14.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

15.
Environmental assessment of supercritical water oxidation of sewage sludge   总被引:1,自引:0,他引:1  
Environmental aspects of using supercritical water oxidation (SCWO) to treat sewage sludge were studied using a life cycle assessment (LCA) methodology. The system studied is the first commercial scale SCWO plant for sewage sludge in the world, treating sludge from the municipal wastewater treatment facility in Harlingen, TX, USA. The environmental impacts were evaluated using three specific environmental attributes: global warming potential (GWP), photo-oxidant creation potential (POCP) and resource depletion; as well as two single point indicators: EPS2000 and EcoIndicator99. The LCA results show that for the described process, gas-fired preheating of the sludge is the major contributor to environmental impacts, and emissions from generating electricity for pumping and for oxygen production are also important. Overall, SCWO processing of undigested sewage sludge is an environmentally attractive technology, particularly when heat is recovered from the process. Energy-conserving measures and recovery of excess oxygen from the SCWO process should be considered for improving the sustainability potential.  相似文献   

16.
There is increasing concern about feeds prepared from food residues (FFR) from an environmental viewpoint; however, various forms of energy are consumed in the production of FFR. Environmental impacts of three scenarios were therefore investigated and compared using life cycle assessment (LCA): production of liquid FFR by sterilization with heat (LQ), production of dehydrated FFR by dehydration (DH), and disposal of food residues by incineration (IC). The functional unit was defined as 1 kg dry matter of produced feed standardized to a fixed energy content. The system boundaries included collection of food residues and production of feed from food residues. In IC, food residues are incinerated as waste, and thus the impacts of production and transportation of commercial concentrate feeds equivalent to the FFR in the other scenarios are included in the analysis. Our results suggested that the average amounts of greenhouse gas (GHG) emissions from LQ, DH, and IC were 268, 1073, and 1066 g of CO(2) equivalent, respectively. The amount of GHG emissions from LQ was remarkably small, indicating that LQ was effective for reducing the environmental impact of animal production. Although the average amount of GHG emissions from DH was nearly equal to that from IC, a large variation of GHG emissions was observed among the DH units. The energy consumption of the three scenarios followed a pattern similar to that of GHG emissions. The water consumption of the FFR-producing units was remarkably smaller than that of IC due to the large volumes of water consumed in forage crop production.  相似文献   

17.
Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.  相似文献   

18.
Land Degradation: A Challenge to Ethiopia   总被引:11,自引:3,他引:8  
Land degradation is a great threat for the future and it requires great effort and resources to ameliorate. The major causes of land degradation in Ethiopia are the rapid population increase, severe soil loss, deforestation, low vegetative cover and unbalanced crop and livestock production. Inappropriate land-use systems and land-tenure policies enhance desertification and loss of agrobiodiversity. Utilization of dung and crop residues for fuel and other uses disturbs the sustainability of land resources. The supply of inputs such as fertilizer, farm machinery and credits are very low. The balance between crop, livestock, and forest production is disturbed, and the farmer is forced to put more land into crop production. For environmentally and socially sustainable development, there is an urgent need to promote awareness and understanding of the interdependence of natural, socioeconomic, and political systems at local and national levels. Understanding the current status and causes of land degradation is very important. This paper reveals the important elements of land degradation in Ethiopia and suggests possible solutions that may help to ameliorate the situation.  相似文献   

19.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   

20.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号