首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   1篇
  2012年   2篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   
2.
Founding queens of the obligatory social parasite ant Polyergus samurai usurp the host ant Formica japonica colony. The aggressive behaviors of F. japonica workers on the parasite queen disappear after the parasite queen kills the resident queen. To determine whether the parasite queen chemically mimics the host ants, we examined the aggressive behavior of F. japonica workers toward glass dummies applied with various extracts of the parasite queen and host workers. The crude extracts and hydrocarbon fraction reproduced the host workers’ behavior to the live ants. The extracts of the post-adoption parasite queen, as well as the nestmate extracts of F. japonica, did not elicit the aggressive behavior, but the extract of the pre-adoption parasite queen triggered attacks by the host workers. The nestmate recognition of host workers did not change, regardless of contact with the parasite. The gas chromatography and gas chromatography–mass spectrometry analyses indicated that the cuticular hydrocarbon (CHC) profile of the parasite queen drastically changed during the process of usurpation. Discriminant analysis showed the successfully usurped P. samurai queen had colony-specific CHC profiles. CHC profiles of the P. samurai queen who killed the host queen were more similar to those of the host queen than the workers, while the P. samurai queen who usurped the queenless colony had a profile similar to those of host workers. These results suggest that the P. samurai queen usually acquires the CHCs from the host queen during the fight, but from host wokers in queenless host colonies.  相似文献   
3.
Begum ZA  Rahman IM  Tate Y  Sawai H  Maki T  Hasegawa H 《Chemosphere》2012,87(10):1161-1170
Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2′-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the metal distribution in the soil before and after the extractive decontamination using biodegradable APCs, and the capability of the APCs in removing the metal ions even from the theoretically immobilized fraction of the contaminated soil was observed. GLDA appeared to possess the greatest potential to decontaminate the soil through ex situ washing treatment compared to the other biodegradable chelants used in the study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号