首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

2.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

3.
Extensive surveys were conducted to explore the diversity of fishes, distribution patterns, abundance, threat, and habitat status in the upper, middle, and lower stretch of river Gomti, a tributary of river Ganga. Altogether 56 fish species belonging to 20 families and 42 genera were collected from various sampling sites. Of the 56 species, five belong to the ‘endangered’ (EN) category and 11 belong to the vulnerable (VU) category. Six major categories of habitat were identified and pattern of fish assemblage and dominant genera in each habitat studied. Considerable differences were observed in the fish species richness and relative abundance (RA) of the species in the different sampling sites of river Gomti. Shannon–Wiener biodiversity index has been calculated for the fishes indicating considerable variation (p < 0.05) across the river. Apart from Indian Major Carps (Labeo rohita, Catla catla, Cirrhinus mrigala), Chitala chitala, Notopterus notopterus, Ompok pabda, O. bimaculatus, Labeo bata, L. calbasu, Cirrhinus reba, Channa marulius, Bagarius bagarius, and Clupisoma garua were the important species. All the species have been reported for the first time in this river. Indiscriminate catch, poisoning, using of fine mesh sized nets, dumping of sewage, siltation, water abstraction, changing land use pattern, decreased water discharge, and exotic species threaten the fish diversity. Urgent need exists for taking up research on the priority fish species and their habitat. Restoration measures have been proposed based on ecosystem scale approach for fish biodiversity conservation.  相似文献   

4.
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005–2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.  相似文献   

5.
In the present communication habitat ecology, species diversity; distribution and different indices of fish biodiversity management were studied in a Central India river (River Betwa, a tributary of River Ganga basin approved under India’s first river linking plan). Correlation between fish species richness with the hydrological attributes showed good relationship and water depth, dissolved oxygen and pH were found the most important variables in shaping fish assemblage. Altogether, sixty-three fish species belonging to 20 families and 45 genera were collected from five sampling stations spread along the upstream, mid stream and lower streams. Cyprinids were the most dominated group represented by 26 species belonging to 15 genera, followed by Bagridae (6 species from 3 genera), and Schilbeidae (4 species from 4 genera). The distribution of fish showed interesting pattern and about 10% species were common to all the sites showing long migration range. Shannon-Weiner diversity index showed considerable variation and ranged from 1.89 to 3.51. Out of 63 species status of 10 species were not known due to data deficit, 29 categorized as lower risk, 14 as vulnerable, 8 as endangered, while the remaining two species were introduced. Our study shows that the River supports considerable diversity of the fishes and is important for conservation and about 34% fish fauna is threatened being either vulnerable or endangered. We assessed that the river supports considerable percentage of food fish (89.47), ornamental fish (49.12%) and sport fish (5.26%). Among the eight major types of fish habitats identified along the entire stretch of river, open river, shallow water and deep pools were habitats contributing maximum diversity. Fish species richness (FSR) were significantly different (P < 0.05) in all the habitats except channel confluence and scour pool. Trophic niche model may be useful for assessing altered as well as less altered fish habitat of the tropical rivers. Since this river will be interlinked in near future, this study would be useful for conservation planning and management and also for future assessment after interlinking. Issues related to various threats to aquatic environment and conservation management strategies have been discussed.  相似文献   

6.
Most of the water diversions on the Sacramento and San Joaquin Rivers (California, United States) and their tributaries are currently unscreened. These unscreened diversions are commonly used for irrigation and are potentially harmful to migrating and resident fishes. A large flume (test section: 18.29 m long, 3.05 m wide and 3.20 m high) was used to investigate the hydraulic fields near an unscreened water diversion under ecologically and hydraulically relevant diversion rates and channel flow characteristics. We investigated all combinations of three diversion rates (0.28, 0.42, and 0.57 m3/s) and three sweeping velocities (0.15, 0.38, and 0.61 m/s), with one additional test at 0.71 m3/s and 0.15 m/s. We measured the three‐dimensional velocity field at seven cross sections near a diversion pipe and constructed regression equations of the observed maximum velocities near the pipe. Because the velocity components in three directions (longitudinal, transverse, and vertical) were significantly greater near the diversion pipe inlet compared with those farther from it, they cannot be neglected in the modeling and design of fish guidance and protection devices for diversion pipes. Our results should be of great value in quantifying the hydraulic fields that are formed around fish guidance devices to design more effective protection for fishes from entrainment into unscreened water‐diversion pipes.  相似文献   

7.
Advances in telemetry have facilitated the continuous monitoring of fish position and movement. At present, there are few examples where this approach has been applied to environmental monitoring or assessment. Here we 1) present a case study that used a fixed antenna array and continuously scanning coded receiving system to monitor the movement of radio-tagged smallmouth bass (Micropterus dolomieu) in a thermal discharge canal on Lake Erie during the winter of 1998/1999, and 2) evaluate the use of fixed telemetry arrays for environmental monitoring. Although the number of radiotagged bass in the canal decreased gradually over time, fish spent the majority of the winter in the canal. When in the canal, bass selected areas upstream of the tempering pumps where water was the warmest. This region was also high in habitat complexity, had adequate velocity refuges, and abundant forage. Despite residing in the thermal effluent throughout the winter, none of the fish monitored were observed to participate in reproductive activities in the canal in the Spring. Interestingly, during a biofouling chlorination pulse in May, 50% of radiotagged fish still residing in the canal left and did not return during the monitoring period. Utility infrastructure accessible to fish, including thermal effluents, should be considered as fish habitat and managed accordingly to minimize mortality and sublethal effects on resident and transient fish. Fixed telemetry arrays that permit the continuous monitoring of fish behavior as described in this paper are widely applicable to many issues in environmental management, monitoring, and conservation.  相似文献   

8.
The activities of some oxidative enzymes (aldehyde oxidase, AO, EC 1.2.3.1; xanthine oxidase, XO, EC 1.17.3.2; sulphite oxidase, SO, EC 1.8.3.1; and monoamine oxidase, MO, EC 1.4.3.4) were investigated in the liver, gill, kidney, brain and muscle of a variety of African catfish (Clarias gariepinus) after 7 and 21 days of exposure to 0.1, 0.2 and 0.4 ppm cadmium (Cd) in ambient water. MO, SO and AO activities were significantly (p < 0.05) decreased in a dose-dependent manner in the liver, kidney and gill in the 7-day Cd-exposed fish when compared to control. Conversely, brain MO, AO and SO activities were significantly (p < 0.05) elevated in a dose-dependent manner in the same fishes relative to control. As in the 7-day Cd-exposed fish, the activities of MO, AO and SO were significantly (p < 0.05) decreased in a dose-dependent manner in the gill, kidney and liver of catfish exposed for 21 days. Same is true for XO in these organs after both duration of exposure, except in the liver where no significant change was observed relative to control. The inhibition of these oxidative enzymes in the liver, gill and kidney of catfish may interfere with their biotransformation function, and ultimately the survival of the fish may be compromised.  相似文献   

9.
10.
11.
A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric “iv”, the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.  相似文献   

12.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

13.
Channel roughness, often described by Manning's n, is used to represent the amount of resistance that flow encounters, and has direct implications on velocity and discharge. Ideally, n is calculated from a long‐term record of channel discharge and hydraulic geometry. In the absence of these data, a combination of photo references and a validated qualitative method is preferable to simply choosing n arbitrarily or from a table. The purpose of this study was to use United States Geological Survey (USGS) streamflow data to calculate roughness coefficients for streams in the mountains of North Carolina. Five USGS gage stations were selected for this study, representing drainage areas between 71.5 and 337 km2. Photo references of the study sites are presented. Measured discharges were combined with hydraulic geometry at a cross‐section to calculate roughness coefficients for flows of interest. At bankfull flow, n ranged between 0.039 and 0.064 for the five study sites. Roughness coefficients were not constant for all flows in a channel, and fluctuated over a large range. At all sites, roughness was highest during low‐flow conditions, then quickly decreased as flow increased, up to the bankfull elevation.  相似文献   

14.
Remote national parks of the western U.S. and Alaska are not immune to contaminants of emerging concern. Semivolatile organic compounds (SOCs) such as pesticides and PCBs can selectively deposit from the atmosphere at higher rates in cold, high‐elevation and high‐latitude sites, potentially increasing risk to these ecosystems. In the environment, SOCs magnify up food chains and are known to increase health risks such as cancer and reproductive impairment. One hundred twenty‐eight fish in 8 national parks in Alaska and the western U.S. were analyzed for contaminant concentrations, assessed by region, and compared to human and wildlife health thresholds. SOC concentrations from an additional 133 fish from a previous study were also included, for a total of 31 water bodies sampled. PCBs, endosulfan sulfate, and p,p′‐DDE were among the most frequently detected contaminants. Concentrations of historic‐use pesticides dieldrin, p,p′‐DDE, and/or chlordanes in fish exceeded USEPA guidelines for human subsistence fish consumers and wildlife (kingfisher) health thresholds at 13 of 14 parks. Average concentrations in fish ranged from 0.6‐280 ng/g lipid (0.02‐7.3 μg/g ww). Contaminant loading was highest in fish from Alaskan and Sierra Nevada parks. Historic compounds were highest in Alaskan parks, while current‐use pesticides were higher in the Rockies and Sierra Nevada. This study provides a rigorous analysis of CECs in fish from national parks and identifies regions at potential risk.  相似文献   

15.
A commonly overlooked aspect of conservation planning assessments is that wildlife managers are increasingly focused on habitats that contain non-native species. We examine this management challenge in the Gila River basin (150,730 km2), and present a new planning strategy for fish conservation. By applying a hierarchical prioritization algorithm to >850,000 fish records in 27,181 sub-watersheds we first identified high priority areas (PAs) termed “preservation PAs” with high native fish richness and low non-native richness; these represent traditional conservation targets. Second, we identified “restoration PAs” with high native fish richness that also contained high numbers of non-native species; these represent less traditional conservation targets. The top 10 % of preservation and restoration PAs contained common native species (e.g., Catostomus clarkii, desert sucker; Catostomus insignis, Sonora sucker) in addition to native species with limited distributions (i.e., Xyrauchen texanus, razorback sucker; Oncorhynchus gilae apache, Apache trout). The top preservation and restoration PAs overlapped by 42 %, indicating areas with high native fish richness range from minimally to highly invaded. Areas exclusively identified as restoration PAs also encompassed a greater percentage of native species ranges than would be expected by the random addition of an equivalent basin area. Restoration PAs identified an additional 19.0 and 26.6 % of the total ranges of two federally endangered species—Meda fulgida (spikedace) and Gila intermedia (Gila chub), respectively, compared to top preservation PAs alone—despite adding only 5.8 % of basin area. We contend that in addition to preservation PAs, restoration PAs are well suited for complementary management activities benefiting native fishes.  相似文献   

16.
Stream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e., riverine dispersal) would weaken or decouple relations between fish community metrics and local environmental conditions. We compared fish-environment relations between streams that flow into large rivers (mainstem tributaries) and streams that lack riverine confluences (headwater tributaries) at multiple spatial grains using data from the USEPA's Environmental Monitoring and Assessment Program in the mid-Atlantic highlands, USA (n = 157 sites). Headwater and mainstem tributaries were not different in local environmental conditions, but showed important differences in fish metric responses to environmental quality gradients. Stream sites flowing into mainstem channels within 10 fluvial km showed consistently weaker relations to local environmental conditions than stream sites that lacked such mainstem connections. Moreover, these patterns diminished at longer distances from riverine confluences, consistent with the hypothesis of riverine dispersal. Our results suggest that (1) the precision of fish bioassessment metrics may be improved by calibrating scoring criteria based on the spatial position of sites within stream networks and (2) the spatial grain of fish bioassessment studies may be manipulated to suit objectives by including or excluding fishes exhibiting riverine dispersal.  相似文献   

17.
A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3–4 times base stream flow, occurred 10–60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day.Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback (Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins (Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout (Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed.Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the aqueduct, but was from the fluctuating backwash flows containing fine sediment that displaced small fish downstream and created unstable benthic substrates for invertebrates.The filter plant that we studied is a direct-feed type (that is, no sedimentation before filtration). These generally require greater frequencies of backwashing than do conventional plants and may therefore have greater biological impacts. Direct-feed plants are becoming increasingly popular throughout the world, for the most part because they are cheaper to build and operate. But if the associated biological problems are mitigated, then the cost savings of direct-feed compared to conventional plants may be lost.  相似文献   

18.
Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4‐tert‐octylphenol and 4‐nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000‐140,000 ng/l), followed by 4‐nonlylphenol and 4‐nonylphenolethoxylates (50‐880 ng/l), 4‐tert‐octylphenol and 4‐tert‐octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1‐54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.  相似文献   

19.
Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L?1. Maximum values of SSC were generally kept below 10 g L?1. Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.  相似文献   

20.
ABSTRACT: The potentially toxic components in coal ash (ash particles, heavy metals) were evaluated in laboratory static, acute (96 hr) bioassays, both separately and in various combinations with extreme pH (5.0 and 8.5), using rainbow trout (Salmo gairdneri) and bluegifi sunfish (Lepomis macrochirus). Ash particle morphology and metal distribution anlaysis, using electron microscopy and surface-subsurface analysis by ion microscopy, showed that metals could be either clumped or evenly distributed on the surface of fly ash. Surface enrichment on fly ash particles from electrostatic precipitators, as measured by ion microscopy, was found for cadmium, copper, chromium, nickel, lead, mercury, titanium, arsenic, and selenium. Bottom (heavy) ash was not acutely toxic to either fish species at concentrations of up to 1500 mg/l total suspended solids (TSS) at pH 5.0, 7.5, or 8.5. Fly ash particles were not acutely toxic to blue-gill at levels up to 1360 mg/l TSS. Rainbow trout were highly sensitive to fly ash (25 to 60 percent mortality) at concentrations of 4.3 to 20.5 mg/I TSS when dissolved metal availability was high but were not sensitive at higher particulate concentrations (58 to 638 mg/I TSS) when dissolved metals were low. When metals were acid-leached from fly ash prior to testing, no rainbow trout mortality occurred at TSS concentrations of up to 2,350 mg/l TSS. When the percent of dissolved metal was high (e.g., 50–90 percent of the total), fish mortality was increased. Rainbow trout were nearly two orders of magnitude more sensitive than bluegill when subjected to a blend of cadmium, chromium, copper, nickel, lead, and zinc. The two species were similar in their acute sensitivity to acidic pH at levels at or below 4.0 and alkaline pH of 9.1. If the pH of coal ash effluent is contained within the range 6.0 to 9.0, acute toxicity to fish can be attributed to trace element availability from fly ash but not heavy ash. Control of holding pond and effluent pH and maximizing pond residence time are important strategies for minimizing effects of ash pond discharges on fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号