首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Western Washington and western Oregon comprise a water-rich region that has a very uneven annual distribution of both precipitation and streamflow. Highest demand for water coincides with lowest streamflow levels between July 1 and September 30 when less than 5 percent of annual water yield occurs. Increases in annual water yield in small, experimental watersheds in the region have ranged up to 600 mm after entire watersheds were logged and up to 300 mm in watersheds that were 25 to 30 percent logged. Most of the increase has occurred during the fall-winter rainy season, and yield increases have been largest during the wettest years. Estimated sustained increases in water yield from most large watersheds subject to sustained yield forest management are at best only 3-6 percent of unaugmented flows. Realistically, watersheds in this region will not be managed to produce more water. Water yield augmentation will continue to be only a small and variable by-product of logging. The utility of water yield augmentation is limited by its size and by its occurrence relative to the time of water demand. In some local areas, reduction of fog interception and drip or establishment of riparian phreatophytic hardwoods may reduce summer flows.  相似文献   

2.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

3.
ABSTRACT: Vegetation management aimed at increasing the amount of usable water yield from precipitation falling on upstream watersheds may be one alternative for supplementing water supplies. Indications are that water yields can be increased within a multiple-use framework, which can benefit or at least be compatible with other natural resource objectives. Through changes in vegetation on a watershed, it is possible to reduce evaporation losses only slightly but significantly increase streamflow runoff. In an assessment of potentials for water yield improvement in Arizona, experimental studies on various vegetation zones are reviewed. Because of either limited acreage or limited rainfall, the alpine, grassland, aspen, and desert shrub vegetation zones are not realistic management areas for Arizona. Furthermore, manipulation of pinyon-juniper woodlands does not appear promising at this time. Conversion of chaparral to grasses and forbs does appear to be a possible treatment for water yield improvement, as well as various silvicultural treatments of mixed conifer and ponderosa pine forests. Streamflow increases are given for experiments in chaparral, mixed conifer, and ponderosa pine vegetation zones. However, complete information on possible constraints for these zones is not currently available. Specific assessment of water yield management options for riparian vegetation is difficult to make, due to incomplete knowledge of water yield changes and other constraints for this vegetation zone. Prior to the final adoption of management practices, results of experimental work must be coupled with economic and social considerations.  相似文献   

4.
ABSTRACT: Sediment losses and water yields were measured for five years on nine forested watersheds in the Gulf Coastal Plain of Arkansas. After one year of pretreatment measurements, three watersheds were clearcut and mechanically site prepared, three were selectively harvested, and three control watersheds were left undisturbed. Sediment losses and water yields were similar for the selectively harvested and cohtrol watersheds during all four post-treatment years. However, clearcutting with mechanical site preparation significantly increased sediment losses and water yields above levels measured on other watersheds. Increased sediment losses persisted for two years, while water yields increased for one year. Although sediment losses from clear-cutting were greater than for other treatments, actual losses averaged only 264 kg/ha and 63 kg/ha for the first and second post-treatment years, respectively. The relatively low sediment losses are attributed to the flat terrain and the relatively low flow discharge rates that typify these sites.  相似文献   

5.
ABSTRACT: Advances in the science of weather modification have provided an opportunity for significant progress in the area of precipitation management. Coordination of efforts and intensification of both laboratory and field research could lead to major advances within the decade. In view of the important decision-making role played by society, however, it is necessary that our scientific efforts be coordinated with a public relations program designed to inform and educate the public on the role and potential of artificial precipitation augmentation. In addition, careful consideration must be given to those social and legal issues related to weather modification. Environmental impact, land use, economic potential and damage liability are aU factors of importance in any comprehensive analysis. Rational solutions to questions in each of these areas is dependent upon the establishment of a sound scientific basis for operational weather modification, which should be the first priority.  相似文献   

6.
ABSTRACT: Statutory and case law at the state level provide critical legal frameworks for water management. As many state governments struggle to improve efficiency in water management and resolve conflicts over water usage, they must continually assess the efficacy of their state water law. Most states have water laws that are disconnected and overlapping. This article presents a methodology to assess state water law and take first steps toward a comprehensive state water resources act. The methodology is driven by issues and conflicts in water management. It synthesizes management and legal analyses into a process that incorporates the diverse perspectives of state water stakeholders. The results of the analysis are identification of management issues, profiles of state water law, and explorations of legal options that are available to the state government. Illinois is provided as a case study for this methodology.  相似文献   

7.
8.
Detecting Temporal Change in Watershed Nutrient Yields   总被引:2,自引:1,他引:1  
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act.  相似文献   

9.
ABSTRACT: Spatial variation of five water quality variables were analyzed using composite water samples collected periodically from eight small watersheds (11.4–71.6 km2) in forested East Texas during 1977 through 1980. Based on 31 observations during the four-year period the average yield of nitrate-nitrite nitrogen (NNN), total kjeldahl nitrogen (TKN), total phosphorus (PO4), chloride (CHL), and total suspended sediment (TSS) were 1.43, 21.96, 3.09, 50.11, and 90.39 ka/ha/yr, respectively. Compared to the water quality standards of the U.S. Environmental Protection Agency (1976) and the Texas Department of Water Resources (1976) for CHL, TSS, and NNN, none of the observations exceeded the limits for public water supplies. The study showed that forested watersheds normally yielded stream flow with better quality than that from agricultural watersheds. Watersheds of greater percent of pasture area, mean slope, stream segment frequency, and drainage density produced greater concentrations for these five chemical parameters in water samples. Meaningful equations were developed for estimating mean average yields for each chemical parameter for each watershed with R2 ranging from 0.77 to 0.96 and standard error of estimates from 17 to 33 percent of the observed means.  相似文献   

10.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

11.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   

12.
ABSTRACT: Streamflow data for water years 1978–84 were evaluated to identify streamflow characteristics for 13 small watersheds (0.46–7.00 mi2) in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. The ranges for mean annual water yields, peak flows, and 7-day low flows for the 13 watersheds were 5.5–28.1 inches, 2.0–34.7 cfsm, and 0.006–0.165 cfsm, respectively. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds) and (2) other (four watersheds representing fir-spruce, lodgepole pine, ponderosa pine, and mountain meadow). The means for annual peak flows and the slopes of the flow.duration curve were significantly different (p=0.05) for the two vegetation classes; differences in mean annual water yield were marginallysignificant(0.05< p <0.10). After they were adjusted for precipitation, the means for annual water yield, peak flows, and slopes of the flow-duration curve were significantly different for the two vegetation classes; differences in the means for annual 7-day low flows were marginally significant. The western larch-Douglas-fir group had somewhat lower water yields but, overall, tended to have more favorable streamfiow characteristics including lower peak flows, higher low flows, and more evenly distributed flow regimes (flatter flow-duration curves) than the “other” class. Four levels of grazing intensity had no effect on streamilow characteristics.  相似文献   

13.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   

14.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   

15.
ABSTRACT: Policies to encourage brush management are under consideration as a means to address the water scarcity issue in Texas. Additional water can be generated by treating some of the 100-million-plus acres of brush-infested rangelands in Texas. Evidence of water yield benefits are, however, tentative at this time. Economic investigations based on available data show the potential desirability of brush management but also show benefits to be critically dependent on added water yield, value, and cost-sharing policy. Wildlife, water rights, and environmental issues are also important considerations. The lack of research information on likely impacts makes it difficult to choose among alternative policies for encouraging brush management. More research on this potential opportunity is needed.  相似文献   

16.
Kang, Min‐Goo and Gwang‐Man Lee, 2011. Multicriteria Evaluation of Water Resources Sustainability in the Context of Watershed Management. Journal of the American Water Resources Association (JAWRA) 47(4):813‐827. DOI: 10.1111/j.1752‐1688.2011.00559.x Abstract: To evaluate water resources sustainability at the watershed scale within a river basin’s context, the Water Resources Sustainability Evaluation Model is developed. The model employs 4 criteria (economic efficiency, social equity, environmental conservation, and maintenance capacity) and has 16 indicators, integrating them using their relative weights. The model is applied to evaluate the water resources sustainability of watersheds in the Geum River basin, South Korea. A geographic information system is employed to efficiently build a database for the indicators, and the values of the indicators are normalized using the probability distribution functions fitted to the datasets of the indicators. The evaluation results show that, overall, the water resources sustainability of the watersheds in the upper basin is better than other areas due to the good environmental conditions and the dam management policies of South Korea. The analysis of the correlations among the model’s components and the comparison between the results of the model and the Water Poverty Index show that the model can provide reasonable evaluation results for the water resources sustainability of watersheds. Consequently, it is concluded that the model can be an effective tool for evaluating the states of water resource management from the perspective of sustainable development and provide a basis on which to create policies for improving any inadequacies in watersheds.  相似文献   

17.
ABSTRACT: With the increase in water demand in Texas, attention has turned to improving water yield by brush control on rangeland watersheds. Several hydrologic models have been developed for either farmland or rangeland. However, none of the models were specifically developed to assess the impact of brush control on rangeland water yield. Yet, modeling the impact of brush control on water yield needs to be considered if alternative techniques are to be compared. Two models, Ekalaka Rangeland Hydrology and Yield Model (ERHYM-II) and Simulator for Water Resources on Rural Basins (SWRRB) were selected. The Soil Conservation Service curve number (SCS-CN) method is used in both models to predict surface runoff from each rainfall event. The major differences between the ERHYM-II and SWRRB models are the evapotranspiration, soil water routing, and plant growth components. The models were evaluated on brush-dominated and chemically and mechanically brush-controlled range watersheds in Texas. Results indicated that both models were capable of simulating soil water and water yield from brush dominated and chemically brush-controlled range watersheds. The models were not able to predict water yield from the mechanically brush-controlled (root plowed) watershed with acceptable accuracy. The depressions that were caused by root plowing stored surface runoff and reduced water yield from the watershed. Information about the size of depressions was not available for further model evaluation.  相似文献   

18.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

19.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

20.
ABSTRACT: This study assesses the potential impact of climate change on stream flow and nutrient loading in six watersheds of the Susquehanna River Basin using the Generalized Watershed Loading Function (GWLF). The model was used to simulate changes in stream flow and nutrient loads under a transient climate change scenario for each watershed. Under an assumption of no change in land cover and land management, the model was used to predict monthly changes in stream flow and nutrient loads for future climate conditions. Mean annual stream flow and nutrient loads increased for most watersheds, but decreased in one watershed that was intensively cultivated. Nutrient loading slightly decreased in April and late summer for several watersheds as a result of early snowmelt and increasing evapotranspiration. Spatial and temporal variability of stream flow and nutrient loads under the transient climate scenario indicates that different approaches for future water resource management may be useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号