首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical montane cloud forests (TMCF) are among the most threatened ecosystems globally in spite of their high strategic value for sustainable development due to the key role played by these forests in hydrological cycle maintenance and as reservoirs of endemic biodiversity. Resources for effective conservation and management programs are rarely sufficient, and criteria must be applied to prioritize TMCF for conservation action. This paper reports a priority analysis of the 13 main regions of TMCF distribution in Mexico, based on four criteria: (1) forest quality, (2) threats to forest permanence, (3) threats to forest integrity, and (4) opportunities for conservation. Due to the diverse socio-environmental conditions of the local communities living in Mexican TMCF regions, their associated social characteristics were also evaluated to provide a background for the planning of conservation actions. A set of indicators was defined for the measurement of each criterion. To assign priority values for subregions within each main region, an international team of 40 participants evaluated all the indicators using multicriteria decision-making analysis. This procedure enabled the identification of 15 subregions of critical priority, 17 of high priority, and 10 of medium priority; three more were not analysed due to lack of information. The evaluation revealed a number of subjects that had hitherto been undetected and that may prove useful for prioritization efforts in other regions where TMCF is similarly documented and faces equally severe threats. Based on this analysis, key recommendations are outlined to advance conservation objectives in those TMCF areas that are subjected to high pressure on forest resources.  相似文献   

2.
Conservation planning is the process of locating and designing conservation areas to promote the persistence of biodiversity in situ. To do this, conservation areas must be able to mitigate at least some of the proximate threats to biodiversity. Information on threatening processes and the relative vulnerability of areas and natural features to these processes is therefore crucial for effective conservation planning. However, measuring and incorporating vulnerability into conservation planning have been problematic. We develop a conceptual framework of the role of vulnerability assessments in conservation planning and propose a definition of vulnerability that incorporates three dimensions: exposure, intensity, and impact. We review and categorize methods for assessing the vulnerability of areas and the features they contain and identify the relative strengths and weaknesses of each broad approach. Our review highlights the need for further development and evaluation of approaches to assess vulnerability and for comparisons of their relative effectiveness.  相似文献   

3.
A major task related to conservation is to predict if planned infrastructure projects are likely to threaten biodiversity. In this study we investigated the potential impact of planned infrastructure in Spain on amphibian and reptile species, two highly vulnerable groups given their limited dispersal and current situation of population decline. We used distribution data of both groups to identify areas of high herpetofauna diversity, and compared the locations of these areas with the locations of the planned road, high-speed train railway and water reservoir network. Four criteria were used for this identification: species richness, rarity, vulnerability, and a combined index of the three criteria. From a total of 1441 cells of 20 x 20 km, areas of high diversity were defined as those cells whose ranked values for the different criteria included either all species or all threatened species. The combined index provided the smallest number of cells needed to retain all threatened species (1.7 and 2.6% of the cells for amphibian and reptile species, respectively). Coincidences between these high diversity areas and cells including planned infrastructures-denominated 'alert planning units'-were 35.4% for amphibians and 31.2% for reptiles. Mitigation of the potential impacts would include actions such as barriers to animal access to roads and railways and ecoducts under these constructions. Our approach provides conservation authorities information that can be used to make decisions on habitat protection. A technique that identifies threats to herpetofauna before they occur is also likely to improve the chance of herpetofauna being protected.  相似文献   

4.
Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning.  相似文献   

5.
Policies designed to conserve sites of nature conservation importance are an important aspect of city planning in the UK. London has led the way in putting in place a spatial hierarchy of sites of nature conservation importance designed to protect wildlife habitats from development. Some wasteland habitats associated with derelict and vacant land receive protection in this way but development pressure on these so-called 'brownfield sites' is high and is likely to continue. This paper examines how conservation professionals in the private, public and voluntary sectors are responding to the threats of biodiversity loss and opportunities for habitat creation posed by re-development of brownfield sites. The study draws on in-depth interviews conducted with conservation professionals and the practices employed by ecological advisers employed by developers seeking to re-develop wasteland sites. It finds that practitioners are negotiating their role in the re-development process in different ways. Key issues relate to the role of ecological science in codifying wasteland habitats, uncertainties about how best to evaluate the conservation importance of such sites and the strategies and tactics employed by different practitioners as they seek to mobilise a range of knowledges and practices to secure ecologically sensitive proposals. Scientific knowledge about wasteland habitats has not stabilised in ways that can consistently inform conservation policy and practice. As a result biodiversity issues of wasteland sites are often discounted in the re-development process. Investment in studies of the basic ecology of urban wastelands could provide a firmer scientific foundation on which conservation policies could build. At the same time, many conservation professionals involved in urban re-development are struggling to promote a pro-active approach to secure environmentally sensitive development. The knowledge and co-operation networks being mobilised to support this approach are fluid and unstable, and favourable development outcomes as yet are few. Formalising these networks to achieve more effective engagements with developers and the construction industry could consolidate ecological practices designed to conserve and re-create the biodiversity of wasteland habitats.  相似文献   

6.
Data needed for informed conservation prioritization are generally greater than the data available, and surrogates are often used. Although the need to anticipate threats is recognized, the effectiveness of surrogates for predicting habitat loss (or vulnerability) to land-use change is seldom tested. Here, we compared properties of two different vulnerability surrogates to validated vulnerability—validated prediction of habitat conversion based on a recent assessment of land-use change. We found that neither surrogate was a particularly effective predictor of vulnerability. Importantly, both surrogates performed poorly in places most imminently threatened with habitat conversion. We also show that the majority of areas protected over the last two decades have low vulnerability to the most active threatening process in this biome (habitat conversion). The contrary patterns of vulnerability and protection suggest that use of validated vulnerability would help to clarify protection needs, which might lead to the improvement of conservation decisions. Our study suggests the integration of validated vulnerability into conservation planning tools may be an important requirement for effective conservation planning in rapidly changing landscapes. We apply our results to discuss the practical considerations and potential value of incorporating validated vulnerability into conservation planning tools both generally and in the context of New Zealand’s indigenous grasslands.  相似文献   

7.
Habitat loss and modification is one of the major threats to biodiversity and the preservation of conservation values. We use the term conservation value to mean the benefit of nature or habitats for species. The importance of identifying and preserving conservation values has increased with the decline in biodiversity and the adoption of more stringent environmental legislation. In this study, conservation values were considered in the context of land-use planning and the rapidly increasing demand for more accurate methods of predicting and identifying these values. We used a k-nearest neighbor interpreted satellite (Landsat TM) image classified in 61 classes to assess sites with potential conservation values at the regional and landscape planning scale. Classification was made at the National Land Survey of Finland for main tree species, timber volume, land-use type, and soil on the basis of spectral reflectance in satellite image together with broad numerical reference data. We used the number and rarity of vascular plant species observed in the field as indicators for potential conservation values. We assumed that significant differences in the species richness, rarity, or composition of flora among the classes interpreted in the satellite image would also mean a difference in conservation values among these classes. We found significant differences in species richness among the original satellite image classes. Many of the classes examined could be distinguished by the number of plant species. Species composition also differed correspondingly. Rare species were most abundant in old spruce forests (>200 m3/ha), raising the position of such forests in the ranking of categories according to conservation values. The original satellite image classification was correct for 70% of the sites studied. We concluded that interpreted satellite data can serve as a useful source for evaluating habitat categories on the basis of plant species richness and rarity. Recategorization of original satellite image classification into such new conservation value categories is challenging because of the variation in species composition among the new categories. However, it does not represent a major problem for the purposes of early-stage land-use planning. Benefits of interpreted satellite image recategorization as a rapid conservation value assessment tool for land-use planners would be great.  相似文献   

8.
Conservation planning aims to protect biodiversity by sustainng the natural physical, chemical, and biological processes within representative ecosystems. Often data to measure these components are inadequate or unavailable. The impact of human activities on ecosystem processes complicates integrity assessments and might alter ecosystem organization at multiple spatial scales. Freshwater conservation targets, such as populations and communities, are influenced by both intrinsic aquatic properties and the surrounding landscape, and locally collected data might not accurately reflect potential impacts. We suggest that changes in five major biotic drivers—energy sources, physical habitat, flow regime, water quality, and biotic interactions—might be used as surrogates to inform conservation planners of the ecological integrity of freshwater ecosystems. Threats to freshwater systems might be evaluated based on their impact to these drivers to provide an overview of potential risk to conservation targets. We developed a risk-based protocol, the Ecological Risk Index (ERI), to identify watersheds with least/most risk to conservation targets. Our protocol combines risk-based components, specifically the frequency and severity of human-induced stressors, with biotic drivers and mappable land- and water-use data to provide a summary of relative risk to watersheds. We illustrate application of our protocol with a case study of the upper Tennessee River basin, USA. Differences in risk patterns among the major drainages in the basin reflect dominant land uses, such as mining and agriculture. A principal components analysis showed that localized, moderately severe threats accounted for most of the threat composition differences among our watersheds. We also found that the relative importance of threats is sensitive to the spatial grain of the analysis. Our case study demonstrates that the ERI is useful for evaluating the frequency and severity of ecosystemwide risk, which can inform local and regional conservation planning.  相似文献   

9.
Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species’ hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on “richness hotspots” may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.  相似文献   

10.
The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km2. The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.  相似文献   

11.
The protection of biological diversity (hereafter biodiversity) is considered one of the fundamental goals for the sustainable management of ecological systems. This paper examines how existing levels of biodiversity influence ecosystem capabilities at the local level. Specifically, it tests the effects of biodiversity and the degree of threat to biodiversity on the quality of local comprehensive plans in Florida as measured by the ability to manage ecosystems. Regression analysis indicates that high biodiversity does not stimulate planners to adopt higher quality plans. Instead, human disturbance or threats to existing levels of biodiversity are the most significant factors in driving ecosystem plan quality. Based on the results, the paper discusses implications for policy and suggests recommendations to improve proactive planning practices associated with managing ecological systems over the long term.  相似文献   

12.
Human-induced global climate change presents a unique and difficult challenge to the conservation of biodiversity. Despite increasing attention on global climate change, few studies have assessed the projected impacts of sea-level rise to threatened and endangered species. Therefore, we estimated the impacts of rising sea levels on the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) across its geographic distribution under scenarios of current conditions, low (0.3-m), medium (0.6-m), and high (0.9-m) sea-level rise. We also investigated the impacts of allowing vegetation to migrate upslope and not allowing migration and of two land-use planning decisions (protection and abandonment of human-dominated areas). Not surprisingly, under all simulations we found a general trend of decreasing total potential LKMR habitat with increasing sea-level rise. Not allowing migration and protecting human-dominated areas both tended to decrease potential LKMR habitat compared with allowing migration and abandoning human-dominated areas. In conclusion, conservation strategies at multiple scales need to be implemented in order to reduce the impact of global climate change on biodiversity and endangered species. At the regional level, managers must consider land-use planning needs that take into account the needs of both humans and biodiversity. Finally, at the local scale those agencies that are in charge of endangered species conservation and ecosystem management need to rethink static approaches to conservation or else stand by and watch ecosystems degrade and species go extinct. This can be accomplished by bioclimatic reserve systems where climatically underrepresented areas are included in conservation planning along with the standard concerns of threat, opportunity, connectivity, and viability.  相似文献   

13.
/ Whereas habitat conservation plans (HCPs) have been intended to provide comprehensive environmental mitigation for multiple species, they often narrow in focus to one species and either one mitigation site or unspecified sites. We developed an indicators framework from which to rate land units for their ecological integrity, collateral values (nonbiological qualities that can improve conservation), and restoration and conservation opportunities. The ratings of land units were guided by the tenets of conservation biology and principles of landscape and ecosystem ecology, and they were made using existing physical and floral information managed on a GIS. As an example of how the indicators approach can be used for HCPs, the 29 legally rare species targeted by the Yolo County HCP were each associated with vegetation complexes and agricultural crops, the maps of which were used for rating some of the landscape indices. The ratings were mapped so that mitigation can be directed to the places on the landscape where the legally rare species should benefit most from conservation practices. The most highly rated land units for conservation opportunity occurred along streams and sloughs, especially where they emerged from the foothills and entered the Central Valley and where the two largest creeks intersected the Sacramento River flood basin. We recommend that priority be given to mitigation or conservation at the most highly rated land units. The indices were easy to measure and can be used with other tools to monitor the mitigation success. The indicators framework can be applied to other large-area planning efforts with some modifications.KEY WORDS: Ecosystem; Indicators; Landscape; Mitigation; Planning; Yolo County; California  相似文献   

14.
Human actions towards land, freshwater and oceans have already caused biodiversity to decline. This study aims to investigate attitudes towards the conservation of biological biodiversity among different groups in a Swedish city, Kristianstad. An inquiry including statements measuring attitudes towards the conservation of habitats, animals and plants, to the biological diversity within selected local areas, to global and national areas, and to societal issues, was replied to by 271 persons. Deciduous forests, birds and wild flowers were given highest priority. An area categorized as wetland including lakeshore meadows with a rich bird life was prioritized as most important for conservation while a forest area was chosen as best for recreation. The experts gave lower priority to arable land, urban parks, domestic animals, agricultural and garden plants and to conifer forests compared to the other groups. Knowledge about what people in general value as important could facilitate the future planning of nature areas in the city of Kristianstad.  相似文献   

15.
Rapid deforestation has occurred in northern Thailand over the last few decades and it is expected to continue. The government has implemented conservation policies aimed at maintaining forest cover of 50% or more and promoting agribusiness, forestry, and tourism development in the region. The goal of this paper was to analyze the likely effects of various directions of development on the region. Specific objectives were (1) to forecast land-use change and land-use patterns across the region based on three scenarios, (2) to analyze the consequences for biodiversity, and (3) to identify areas most susceptible to future deforestation and high biodiversity loss. The study combined a dynamic land-use change model (Dyna-CLUE) with a model for biodiversity assessment (GLOBIO3). The Dyna-CLUE model was used to determine the spatial patterns of land-use change for the three scenarios. The methodology developed for the Global Biodiversity Assessment Model framework (GLOBIO 3) was used to estimate biodiversity intactness expressed as the remaining relative mean species abundance (MSA) of the original species relative to their abundance in the primary vegetation. The results revealed that forest cover in 2050 would mainly persist in the west and upper north of the region, which is rugged and not easily accessible. In contrast, the highest deforestation was expected to occur in the lower north. MSA values decreased from 0.52 in 2002 to 0.45, 0.46, and 0.48, respectively, for the three scenarios in 2050. In addition, the estimated area with a high threat to biodiversity (an MSA decrease >0.5) derived from the simulated land-use maps in 2050 was approximately 2.8% of the region for the trend scenario. In contrast, the high-threat areas covered 1.6 and 0.3% of the region for the integrated-management and conservation-oriented scenarios, respectively. Based on the model outcomes, conservation measures were recommended to minimize the impacts of deforestation on biodiversity. The model results indicated that only establishing a fixed percentage of forest was not efficient in conserving biodiversity. Measures aimed at the conservation of locations with high biodiversity values, limited fragmentation, and careful consideration of road expansion in pristine forest areas may be more efficient to achieve biodiversity conservation.  相似文献   

16.
The need for enhanced environmental planning and management for highland aquatic resources is described and a rationale for integrated action planning is presented. Past action planning initiatives for biodiversity conservation and wetland management are reviewed. A reflective account is given of integrated action planning from five sites in China, India and Vietnam. Eight planning phases are described encompassing: stakeholder assessment and partner selection; rapport building and agreement on collaboration; integrated biodiversity, ecosystem services, livelihoods and policy assessment; problem analysis and target setting; strategic planning; planning and organisation of activities; coordinated implementation and monitoring; evaluation and revised target setting. The scope and targeting of actions are evaluated using the Driving forces, Pressures, State, Impacts and Responses framework and compatibility with biodiversity conservation and socio-economic development objectives are assessed. Criteria to evaluate the quality of planning processes are proposed. Principles for integrated action planning elaborated here should enable stakeholders to formulate plans to reconcile biodiversity conservation with the wise use of wetlands.  相似文献   

17.
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.  相似文献   

18.
Agriculture is the major land use at a global scale. In addition to food production, multifunctionality of landscapes, including values and ecosystem services like biodiversity, recreation and culture, is now focus for management. This study explores how a scenario approach, involving different stakeholders, may help to improve landscape management for biodiversity conservation. Local farmers and executives at the County Administrative Board were invited to discuss rural development and conditions for farmland biodiversity in two Swedish landscapes. The potential biodiversity for three future land use scenarios for the two landscapes was discussed: nature conservation, outdoor recreation and energy production, and compared with current and historical landscapes in each region.Analyses of habitat areas, connectedness and landscape diversity suggested that the energy and recreation scenarios had a negative impact on farmland biodiversity, whereas the nature conservation scenario, the current and historically reconstructed landscapes had a higher potential for biodiversity. The farmers appreciated the nature conservation scenario, but also the energy production scenario and they highlighted the need of increased subsidies for management of biodiversity. The farmers in the high production area were less interested in nature quality per se. The executives had similar opinions as the farmers, but disagreed on the advantages with energy production, as this would be in conflict with the high biodiversity and recreational values. The local physical and socio-economical conditions differ between landscapes and potentially shaped the stakeholders emotional attachment to the local environment, their opinions and decisions on how to manage the land. We stress the importance of incorporating local knowledge, visions and regional prerequisites for different land uses in conservation, since site and landscape specific planning for biodiversity together with a flexible subsidy system are necessary to reach the conservation goals within EU.  相似文献   

19.
Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species' occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.  相似文献   

20.
The extent of wetland in New Zealand has decreased by approximately 90% since European settlement began in 1840. Remaining wetlands continue to be threatened by drainage, weeds, and pest invasion. This article presents a rapid method for broad-scale mapping and prioritising palustrine and estuarine wetlands for conservation. Classes of wetland (lacustrine, estuarine, riverine, marine, and palustrine) were mapped using Landsat ETM+ imagery and centre-points of palustrine and estuarine sites as ancillary data. The results shown are for the Manawatu–Wanganui region, which was found to have 3060 ha of palustrine and 250 ha of estuarine wetlands. To set conservation priorities, landscape indicators were computed from a land-cover map and a digital terrain model. Four global indicators were used (representativeness, area, surrounding naturalness, and connectivity), and each was assigned a value to score wetland sites in the region. The final score is an additive function that weights the relative importance of each indicator (i.e., multicriteria decision analysis). The whole process of mapping and ranking wetlands in the Manawatu–Wanganui region took only 6 weeks. The rapid methodology means that consistent wetland inventories and ranking can now actually be produced at reasonable cost, and conservation resources may therefore be better targeted. With complete inventories and priority lists of wetlands, managers will be able to plan for conservation without having to wait for the collection of detailed biologic information, which may now also be prioritised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号