首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 980 毫秒
1.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   

2.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

3.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) has been used for hydrologic analyses at various watershed scales. However, little is known about the model's performance in coastal watersheds. In this study SWAT was evaluated for its applicability in three Louisiana coastal watersheds: the Amite, Tickfaw, and Tangipahoa River watersheds. The model was calibrated with daily discharge from 1976 to 1977 and validated from 1979 to 1999 for the Amite and Tangipahoa and with daily discharge from 1979 to 1989 for the Tickfaw. Deviation of mean discharge and the Nash‐Sutcliffe model efficiency were used to evaluate model behavior. The study found that Manning's roughness coefficient for the main channel, SCS curve number, and soil evaporation compensation factor were the most sensitive parameters for these coastal watersheds. The Manning's roughness coefficient showed the greatest effect on the response time of surface runoff, suggesting the critical role of channel routing in hydrologic modeling for lowland watersheds. The SWAT model demonstrated an excellent performance, with Nash‐Sutcliffe efficiencies of 0.935, 0.940, and 0.960 for calibrations of the Amite, Tickfaw, and Tangipahoa watersheds, respectively, and of 0.851, 0.811, and 0.867 for validations. The modeling results demonstrate that SWAT is capable of simulating hydrologic processes for medium scale to large scale coastal lowland watersheds in Louisiana.  相似文献   

4.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

5.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

7.
Reservoir outflow is an important variable for understanding hydrological processes and water resource management. Natural streamflow variation, in addition to the streamflow regulation provided by dams and reservoirs, can make streamflow difficult to understand and predict. This makes them a challenge to accurately simulate hydrologic processes at a daily scale. In this study, three Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), were examined and compared to model reservoir outflow. Past, current, and future hydrologic and meteorological data were used as model inputs, and the outflow of next day was used as prediction. Simulation results demonstrated that all three models can reasonably simulate reservoir outflow. For Carlyle Lake, the coefficient of determination and Nash–Sutcliffe efficiency were each close to one for the three models. The coefficient of determination, relative mean bias, and root mean square error indicated that the SVM performed better than the RF and ANN, but the SVM output displayed a larger relative mean bias than that from RF and ANN. For Lake Shelbyville, the ANN model performed better than RF and SVM when considering the coefficient of determination, Nash–Sutcliffe efficiency, relative mean bias, and root mean square error. The study results demonstrate that the three ML algorithms (RF, SVM, and ANN) are all promising tools for simulating reservoir outflow. Both the accuracy and efficacy of the three ML algorithms are considered to support practitioners in planning reservoir management.  相似文献   

8.
李强 《资源开发与保护》2012,(5):393-395,F0002
利用地统计学的理论与方法,以黄土高原南部地区为例,分别运用径向基函数法、普通克里格法和反距离权重法对研究区内139个气象台站2010年的年平均气温和年降水量进行了空间插值,并利用交叉检验方法对插值精度进行了评估。评估结果表明,3种空间插值方法对研究区域内的气象要素进行统计内插的效果都较好。对气温来说,径向基函数法最好,其均方根预测误差值仅为2.263,其次是反距离权重法和普通克里格最好,均方根预测误差值分别仅为2.377和2.38;对降水来说,则是普通克里格法最优,均方根预测误差最小,且其标准均方根预测误差值为0.8205,接近于1。由此可见,对年均降水量采用普通克里格插值法的精度较高。  相似文献   

9.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

10.
A large international watershed, the St. Clair‐Detroit River System, containing both extensive urban and agricultural areas, was modeled using the Soil and Water Assessment Tool (SWAT) model. The watershed, located in southeastern Michigan, United States, and southwestern Ontario, Canada, encompasses the St. Clair, Clinton, Detroit (DT), Sydenham (SY), Upper, and Lower Thames subwatersheds. The SWAT input data and model resolution (i.e., hydrologic response units, HRUs), were established to mimic farm boundaries, the first time this has been done for a watershed of this size. The model was calibrated (2007–2015) and validated (2001–2006) with a mix of manual and automatic methods at six locations for flow and water quality at various time scales. The model was evaluated using Nash–Sutcliffe efficiency and percent bias and was used to explore major water quality issues. We showed the importance of allowing key parameters to vary among subwatersheds to improve goodness of fit, and the resulting parameters were consistent with subwatershed characteristics. Agricultural sources in the Thames and SY subwatersheds and point sources from DT subwatershed were major contributors of phosphorus. Spatial distribution of phosphorus yields at HRU and subbasin levels identified locations for potential management targeting for both point and nonpoint sources and revealed that in some subwatersheds nonpoint sources are dominated by urban sources.  相似文献   

11.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   

12.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

13.
Abstract: The hydrological simulation program – FORTRAN (HSPF) is a comprehensive watershed model that employs depth‐area‐volume‐flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross‐sections and reservoirs. An accurate FTABLE determination for a stream cross‐section site requires an accurate determination of mean flow depth, mean flow width, roughness coefficient, longitudinal bed slope, and length of stream reach. A method that uses regional regression equations to estimate mean flow depth, mean flow width, and roughness coefficient is presented herein. FTABLES generated by the proposed method (Alternative Method) and FTABLES generated by Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) were compared. As a result, the Alternative Method was judged to be an enhancement over the BASINS method. First, the Alternative Method employs a spatially variable roughness coefficient, whereas BASINS employs an arbitrarily selected spatially uniform roughness coefficient. Second, the Alternative Method uses mean flow width and mean flow depth estimated from regional regression equations whereas BASINS uses mean flow width and depth extracted from the National Hydrography Dataset (NHD). Third, the Alternative Method offers an option to use separate roughness coefficients for the in‐channel and floodplain sections of compound channels. Fourth, the Alternative Method has higher resolution in the sense that area, volume, and flow data are calculated at smaller depth intervals than the BASINS method. To test whether the Alternative Method enhances channel hydraulic representation over the BASINS method, comparisons of observed and simulated streamflow, flow velocity, and suspended sediment were made for four test watersheds. These comparisons revealed that the method used to estimate the FTABLE has little influence on hydrologic calibration, but greatly influences hydraulic and suspended sediment calibration. The hydrologic calibration results showed that observed versus simulated daily streamflow comparisons had Nash‐Sutcliffe efficiencies ranging from 0.50 to 0.61 and monthly comparisons had efficiencies ranging from 0.61 to 0.84. Comparisons of observed and simulated suspended sediments concentrations had model efficiencies ranging from 0.48 to 0.56 for the daily, and 0.28 to 0.70 for the monthly comparisons. The overall results of the hydrological, hydraulic, and suspended sediment concentration comparisons show that the Alternative Method yielded a relatively more accurate FTABLE than the BASINS method. This study concludes that hydraulic calibration enhances suspended sediment simulation performance, but even greater improvement in suspended sediment calibration can be achieved when hydrological simulation performance is improved. Any improvements in hydrological simulation performance are subject to improvements in the temporal and spatial representation of the precipitation data.  相似文献   

14.
Abstract: Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar – NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical‐based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash‐Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three‐day period) with NS values of (0.60‐0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ?16%; NS = 0.38‐0.94; RMSE = 0.07‐0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite‐estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground‐based radar networks (i.e., much of the third world).  相似文献   

15.
ABSTRACT: Techniques were developed using vector and raster data in a geographic information system (GIS) to define the spatial variability of watershed characteristics in the north-central Sierra Nevada of California and Nevada and to assist in computing model input parameters. The U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter watershed model, simulates runoff for a basin by partitioning a watershed into areas that each have a homogeneous hydrologic response to precipitation or snowmelt. These land units, known as hydrologic-response units (HRU's), are characterized according to physical properties, such as altitude, slope, aspect, land cover, soils, and geology, and climate patterns. Digital data were used to develop a GIS data base and HRIJ classification for the American River and Carson River basins. The following criteria are used in delineating HRU's: (1) Data layers are hydrologically significant and have a resolution appropriate to the watershed's natural spatial variability, (2) the technique for delineating HRU's accommodates different classification criteria and is reproducible, and (3) HRU's are not limited by hydrographic-subbasin boundaries. HRU's so defined are spatially noncontiguous. The result is an objective, efficient methodology for characterizing a watershed and for delineating HRU's. Also, digital data can be analyzed and transformed to assist in defining parameters and in calibrating the model.  相似文献   

16.
The separation of the base flow component from a varying streamflow hydrograph is called “hydrograph analysis.” In this study, two digital filter based separation modules, the BFLOW and Eckhardt filters, were incorporated into the Web based Hydrograph Analysis Tool (WHAT) system. A statistical component was also developed to provide fundamental information for flow frequency analysis and time series analysis. The Web Geographic Information System (GIS) version of the WHAT system accesses and uses U.S. Geological Survey (USGS) daily streamflow data from the USGS web server. The results from the Eckhardt filter method were compared with the results from the BFLOW filter method that was previously validated, since measured base flow data were not available for this study. Following validation, the two digital filter methods in the WHAT system were run for 50 Indiana gaging stations. The Nash‐Sutcliffe coefficient values comparing the results of the two digital filter methods were over 0.91 for all 50 gaging stations, suggesting the filtered base flow using the Eckhardt filter method will typically match measured base flow. Manual separation of base flow from streamflow can lead to inconsistency in the results, while the WHAT system provides consistent results in less than a minute. Although base flow separation algorithms in the WHAT system cannot consider reservoir release and snowmelt that can affect stream hydrographs, the Web based WHAT system provides an efficient tool for hydrologic model calibration and validation. The base flow information from the WHAT system can also play an important role for sustainable ground water and surface water exploitation, including irrigation and industrial uses, and estimation of pollutant loading from both base flow and direct runoff. Thus, best management practices can be appropriately applied to reduce and intercept pollutant leaching if base flow contributes significant amounts of pollutants to the stream. This Web GIS based system also demonstrates how remote, distributed resources can be shared through the Internet using Web programming.  相似文献   

17.
ABSTRACT: Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to communicate model results, leading to a broader understanding of the model assumptions, sensitivities, and conclusions at a management level.  相似文献   

18.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   

19.
Abstract: In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade‐offs between these objectives. A Pareto optimal solution set is achieved when a solution cannot be improved upon without degrading at least one of its objective criteria. This study investigated the application of multi‐objective evolutionary algorithm (MOEA) and Pareto ordering optimization in the automatic calibration of the Soil and Water Assessment Tool (SWAT), a process‐based, semi‐distributed, and continuous hydrologic model. The nondominated sorting genetic algorithm II (NSGA‐II), a fast and recent MOEA, and SWAT were called in FORTRAN from a parallel genetic algorithm library (PGAPACK) to determine the Pareto optimal set. A total of 139 parameter values were simultaneously and explicitly optimized in the calibration. The calibrated SWAT model simulated well the daily streamflow of the Calapooia watershed for a 3‐year period. The daily Nash‐Sutcliffe coefficients were 0.86 at calibration and 0.81 at validation. Automatic multi‐objective calibration of a complex watershed model was successfully implemented using Pareto ordering and MOEA. Future studies include simultaneous automatic calibration of water quality and quantity parameters and the application of Pareto optimization in decision and policy‐making problems related to conflicting objectives of economics and environmental quality.  相似文献   

20.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号