首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In current work, an optimum solid loading (solid: liquid = 1:20), pH (4.8), temperature (50°C), and enzyme dosing of 20 filter paper unit (amount of enzyme required to release 1 µmol of glucose as reducing sugar from filter paper in per mL per minute) were enumerated for enzymatic hydrolysis of banana stem using cellulase from Trichoderma reesei. Further, inhibition study on enzymatic hydrolysis of banana stem was investigated by the supplementation of monosaccharides (glucose, galactose, mannose, xylose, and arabinose), disaccharide (cellobiose), and inhibitors (acetic acid and furfural obtained from pre-enzymatic hydrolysis steps). Glucose and cellobiose showed inhibitory effect on enzymatic hydrolysis of pretreated banana stem at or above 8 g/L while galactose, mannose, and xylose showed a significant inhibitory effect at or above 4 g/L. Instead of inhibition, arabinose enhanced the enzymatic hydrolysis with increase in total reducing sugars. Acetic acid did not show any significant inhibition while furfural inhibited the system at a comparative low concentration of 2 g/L. Further, scanning electron microscopy analysis was performed to investigate the difference in ultra-structural morphology of raw biomass, pretreated biomass, and biomass obtained after enzymatic hydrolysis.  相似文献   

2.
Oil palm empty fruit bunch (OPEFB) is a potential raw material for production of lignocellulosic bioethanol. The OPEFB was pretreated with 8% sodium hydroxide (NaOH) solution at 100°C for 10 to 90 min. Enzymatic digestion was carried out using cellulase and β-glucosidase at 45°C for 24 h. It was then inoculated with Mucor indicus spores suspension and fermented under anaerobic conditions at 37°C for 96 h. Sodium hydroxide pretreatment effectively removed 51–57% of lignin in the OPEFB and also its hemicellulose (40–84%). The highest glucan digestibility (0.75 g/g theoretical glucose) was achieved in 40-min NaOH pretreatment. Fermentation by M. indicus resulted in 68.4% of the theoretical ethanol yield, while glycerol (16.2–83.2 mg/g), succinic acid (0–0.4 mg/g), and acetic acid (0–0.9 mg/g) were its by-products. According to these results, 11.75 million tons of dry OPEFB in Indonesia can be converted into 1.5 billion liters of ethanol per year.  相似文献   

3.
Present investigation was done to evaluate various algal genera found in water bodies of Varanasi city. The potential of any biomass for biofuels (bioalcohols, biohydrogen, etc.) production depends on the quantity of extractable sugar present in it. Acid (H2SO4) and alkali (NaOH) pretreatment were performed, and H2SO4 was chosen due to its nearly double yield as compared with alkaline pretreatment. Response surface methodology was utilized for the optimization of operating parameters such as treatment temperature, time, and acid concentration. Sugar yield up to 0.33 g/g of dry biomass was obtained using cyanobacterial biomass of Lyngbya limnetica, at 100°C, 59.19 min, and H2SO4 concentration of 1.63 M.  相似文献   

4.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

5.
A fused silica capillary reactor combined with a heating/cooling stage, a microscope and a digital camera were used to investigate phase behavior during the hydrothermal liquefaction of microalgae (Dunaliella tertiolecta) and model compounds, including soya protein and glycine, starch, glucose and xylose, stearic acid and palmitic acid. Bubbles were generated at 246°C and disappeared at 360°C upon heating when Dunaliella tertiolecta used as feedstocks. Moreover, liquid products were generated at 300°C upon heating and oily liquid products began to separate out at 250°C upon cooling. The phase behavior of soya protein was similar to that of the Dunaliella tertiolecta. Meanwhile, there only observed the bubbles generation during hydrothermal liquefaction of glycine. Heating the starch, glucose and xylose above 350°C generated black solids from carbonization. Stearic acid and palmitic acid only had the process of melting, dissolution, dispersion and precipitation.  相似文献   

6.
ABSTRACT

The quality of microalgal biofuel depends on the fatty acid (FA) distribution. A high ratio of saturated fatty acids (SFAs) favors better biofuel characteristics. Palmitic acid (C16:0) and stearic acid (C18:0) are essential FAs for required biodiesel quality. In this study, combined effects of growth medium concentrations of NaCl, glucose and glycerol on cell composition and FA profile of the Chlorella vulgaris SAG 211–12 were investigated. A central composite design (CCD) based design of experiments (DoE) was used for experimental setup. According to experimental results, the maximum mass fraction for palmitic acid (C16:0), 40.67% of total fatty acids, was obtained in the medium supplemented with 0.9% (w/v) NaCl, 0.3% (w/v) glucose, and 0.3% (w/v) glycerol, whereas stearic acid (C18:0) percentage reached the highest value of 22.16% of total fatty acids in the presence of 2.5% NaCl, 0.6% glucose, and 0.6% glycerol. According to the same set of designed experiments, best starch content was found as 22.08% of dry cell weight in a medium containing 2.0% NaCl, 0.3% glucose, and 0.3% glycerol. C16:0 mass fraction as a function of three medium ingredient concentrations was modeled using a Kriging model. Optimum concentrations of NaCl, glucose and glycerol to reach maximum C16:0 fraction were predicted as 0.5, 1, and 1%, respectively.  相似文献   

7.
Pyrolysis is a promising way to upgrade large amounts of residues from olive oil processing into charcoal. Pyrolysis of the stone and pulp fractions needed to be investigated before conclusions could be drawn. We subjected the olive stone fraction, the pulp fraction, and a mixture of the two to dynamic pyrolysis and isothermal pyrolysis at 360°C. We characterized the charcoals resulting from isothermal pyrolysis at 360°C for different durations in terms of the fixed-carbon content (FCC), carbon content (CC), and high heating value (HHV). We found that charcoal yield from the pulp was higher than that from the stones, which were 38.1% and 32.9%, respectively, after pyrolysis for 360 min. This seemingly unexpected result was due to the high contents of ash (6.22%) and extractives (13%) in the pulp, which remained completely and partially undecomposed, respectively, in the charcoals and are accounted for when calculating yields. However, charcoals obtained from the stones were of higher quality than charcoals from the pulp, with lower ash content and higher FCC, CC, and HHV. In particular, the FCC, CC, and HHV after pyrolysis for 360 min were 73.2%, 74.4%, and 30.2 MJ/kg for the stones and only 61.8%, 63.2%, and 25.9 MJ/kg for the pulp, respectively. Depending on the required quality of the final charcoal, our results help decide whether to pyrolyse the entire olive residues or only one of the two fractions, more likely the stones.  相似文献   

8.
This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 ± 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 °C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 °C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 °C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.  相似文献   

9.
In the present study, response surface methodology (RSM) involving central composite design (CCD) was applied to optimize the reaction parameters of biodiesel production from yellow mustard (Sinapis alba L.) seed oil during the single-step transesterification process. A total of 30 experiments were designed and performed to determine under the effects of variables on the biodiesel yield such as methanol to oil molar ratio (2:1–10:1), catalyst concentration (0.2–1.0 wt.% NaOH), reaction temperature (50–70°C), and reaction time (30–90 min). The second order polynomial model was used to predict the biodiesel yield and coefficient of determination (R2) was found to be at 0.9818. The optimum biodiesel yield was calculated as 96.695% from the model with the following reaction conditions: 7.41:1 of methanol to oil molar ratio, 0.63 wt. % NaOH of catalyst concentration, 61.84°C of reaction temperature, and 62.12 min of reaction time. It is seen that the regression model results were in agreement with the experimental data. The results showed that RSM is a suitable statistical technique for optimizing the reaction parameters in the transesterification process in order to maximize the biodiesel yield.  相似文献   

10.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

11.
Transesterification of a mixture of vegetable oils with methanol using metal oxide catalysts derived from snail shell (SS) for biodiesel production was investigated. The metal oxides obtained from calcined snail shells in the temperature range of 650°–950 °C and modified by loading different potassium salts were used as a catalyst in the process. The catalysts were characterized by FT-IR, XRD, SEM-EDS, XPS and TGA. Catalytic activities of developed catalysts were also tested by Hammet indicator method and ion exchange method. The best calcination conditions were observed at 850°C for 4 hours based on biodiesel yield. The KF loaded snail shell gave highest biodiesel yield of 98 ± 1% in a batch reactor with highest basicity (15.9 mmoles/g) and basic strength measured by Hammet method. The optimized reaction conditions were: reaction temperature 65°C, reaction time 3 hours, methanol to oil molar ratio 9:1 and catalyst concentration 3wt%. Leaching and reusability tests confirm the stability of the catalyst as it encounters only 3% of leaching and small changes in catalytic activity up to five runs in terms of biodiesel yield.  相似文献   

12.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   

13.
Understanding the effect of the liquid depth (z) on the acoustic generation of hydrogen is highly required for designing large-scale sonoreactors for hydrogen production because acoustic cavitation is the central event that initiates sonochemical reactions. In this paper, we present a computational analysis of the liquid-depth effect on the generation of H2 from a reactive acoustic bubble trapped in water irradiated with an attenuating sinusoidal ultrasound wave. The computations were made for different operating conditions of frequency (355–1000 kHz), acoustic intensity (1–5 W/cm2), and liquid temperature (10–30°C). The contribution of the acoustic wave attenuation on the overall effect of depth was appreciated for the different conditions. It was found that the acoustic generation of hydrogen diminished hardly with increasing depth up to z = 8 m, and the depth effect was strongly operating parameter-dependent. The sound wave attenuation played a crucial role in quenching H2 yield, particularly at higher z. The reduction of the H2 yield with depth was more pronounced at higher frequency (1000 kHz) and lower temperature (10°C) and acoustic intensity (1 W/cm2). The attenuation of the sound wave may contribute up to 100% in the overall reductive effect of depth toward H2 production rate. This parameter could be imperatively included when studying all aspects of underwater acoustic cavitation.  相似文献   

14.
In this work we applied base catalyzed transesterification to convert non-edible welted thistle oil (Carduus acanthoides) as new non-edible feedstock into biodiesel (Fatty acid methyl esters). The highest biodiesel yield of 88% was obtained using optimized reaction conditions of 70°C and 5:1 molar ratio (methanol:oil). The synthesized esters were characterize and confirmed by the application of NMR and FT-IR techniques. Gas chromatography and mass spectroscopy identified different fatty acids as palmatic acid (C16:0), oleic acid (C18:1), linoleic acid (18:2), arachidic acid (C20:0), eicosanic acid (C20:1), and erucic acid (C22:1) in the oil of welted thistle. Six corresponding methyl esters reported in welted thistle oil biodiesel includes 9-hexadecenoic acid, hexadecanoic acid, 9-octadecadienoic acid, 11-eicosanoic acid, eicosanoic acid and 13-docosenoicacid. Fuel properties, such as density @40°C Kg/L (0.8470), kinematic viscosity @ 40°C c St (4.37), flash point (95°C), cloud point (+4°C), pour point (?5°C), and sulfur contents (0.0112% wt) of the biodiesel produced were compatible with American Society for Testing and Materials D 6751 specifications.  相似文献   

15.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   

16.
In the present study crude Garcinia gummi-gutta seed oil was evaluated as a potential feedstock for biodiesel production. Due to the high acid value (29.73 mg KOH/g) the oil was converted to biodiesel by using acid catalyzed esterification process. Further, biodiesel properties of the sample were evaluated, which fulfilled the biodiesel specifications laid by ASTM D6751, EN 14214 and IS 15607. The biodiesel possessed excellent cetane number (66.09) and a high flash point (158°C). In addition, the calorific value (41.03 MJ/kg) was very close to diesel fuel. The results suggest that the G. gummi-gutta can be an alternative source for diesel and can be used as a potential feedstock for biodiesel in India.  相似文献   

17.
ABSTRACT

According to the structure of photovoltaic/phase change material (PV/PCM), the mechanism of internal heat transfer, transmission, storage, and temperature control is analyzed, and a two-dimensional finite element analysis model of PV/PCM structure is established. This study is carried out on the effect of PCM thermal conductivity on internal temperature distribution characteristics of PV/PCM and temperature control characteristics of solar cells. The results show that the increase in thermal conductivity of PCM can prolong the temperature control time of solar cell in PV/PCM system, for example, when the thermal conductivity is increased from 0.2 W/(m·K) to1.5 W/(m·K) under a thickness of 4 cm, the duration when PV/PCM solar cell temperature is controlled below 40°C and extended from 52 min to 184 min. In addition, PV/PCM experimental prototypes are designed with the LA-SA-EG composite PCM peak melting point of 46°C and thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K), respectively. The results indicate that compared with PCM-free solar cells, the maximum temperature of PV/PCM prototype solar cells with thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K) is reduced by 10.8°C and 4.6°C, respectively, with average output power increased by 4.1% and 2.2%, respectively, under simulated light sources. Under natural light conditions, the average output power is increased by 6.9% and 4.3%, respectively. The results provide theoretical and experimental basis for the optimization of PV/PCM design by changing the thermal conductivity of PCM.  相似文献   

18.
In this study, a non-edible seed oil of Alexandrian Laurel (Calophyllum inophyllum L.) with higher free fatty acid content has been harnessed to produce biodiesel by transesterification process. The 20.2% free fatty acid (FFA) content was first reduced to 12.9% by using TOP degumming process. Ortho-phosphoric acid was used to esterify the refined kernel oil. Transesterification reaction was performed with NaOH as an alkaline catalyst and methanol as an analytical solvent. The effects of methanol to oil molar ratio (MR), catalyst concentration (CC), reaction temperature (TP), reaction time (TM), and stirrer speed (SS) on biodiesel conversion were studied to optimize the transesterification conditions using DOE- approach. The experimental study revealed that 9:1 MR, 0.8 wt.% CC, 60°C TP, 75 min TM and 1000 rpm SS were the optimal process control variables. The study indicated that CC was the most important control parameter in optimal methyl ester production. The optimal treatment combination yielded 97.14% of biodiesel. The profile of biodiesel was determined using gas chromatography-mass spectrometry. 1H NMR spectrum of Calophyllum inophyllum methyl ester (CIME) has been reported. The properties of the biodiesel have been found within specifications of the ASTM D6751 and EN 14214 standards and hence could be considered as a suitable alternative to diesel fuel for sustainable circulation of carbon.  相似文献   

19.
The chicken fat ethyl ester (CFEE) was developed through alkali-catalyzed transesterification with ethanol using potassium hydroxide (KOH) as a catalyst. Parameters affecting the process of transesterification such as the catalyst concentration, ethanol to oil molar ratio, reaction temperature, and reaction duration are investigated. As a result, maximum CFEEs of 90% (~96.21 ester content% w/w) was obtained under optimal conditions of 1.0 wt.% KOH, 8:1 ethanol to fat molar ratio, a reaction temperature of 70°C, and a duration of 90 min. Dry washing method using (3.0% w/w) of silica gel was used to purify the crude ethyl ester from the residual catalyst, glycerol, and other impurities. Properties of the produced ethyl esters were determined and found in accordance with specifications prescribed by the ASTM standards. Moreover, blends of CFEEs and petrodiesel were prepared and evaluated according to ASTM test methods.  相似文献   

20.
The main object of this study was the investigation of the thermal recycling of commingled waste textile fibers, with the aim of the production of useful end products. Differential scanning calorimetry/Thermo gravimetric analysis (DSC/TGA) was applied to determine the thermal degradation characteristics of the commingled waste textile fibers and there are two peaks located at the temperature ranges of 299–360°C and 399–500°C. Commingled waste fiber was pyrolyzed in a nitrogen atmosphere in relation to three different temperatures (500, 600, and 700°C), heating rates (25 and 50°C min?1), and retention times (15 and 30 min). The effect of the experimental conditions such as pyrolysis temperature, heating rates, and retention time on the formation of char and gas--liquid products was investigated and the product yields were determined from the rate of the weight loss. The highest conversion rate 82.9 wt.% liquid--gas product and 17.1 wt.% char product was achieved at 700°C. Pyrolysis gases were taken for every 7, 15, and 25 min and were analyzed for major components such as CO, CO2, CH4, and H2 by gas chromatography. The pyrolysis char called as carbon black derived from the pyrolysis of commingled waste textile fibers was analyzed for a range of properties, including the elemental analysis, moisture content, ash content, calorific value, and trace metal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号