首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对城市生活垃圾填埋处置技术的思考   总被引:7,自引:1,他引:7  
曹霞  刘丹 《四川环境》2004,23(3):60-63
本文分析了我国广泛使用的垃圾填埋技术——厌氧卫生填埋的缺点,介绍了当前新型的填埋技术——生物反应器填埋技术、好氧填埋技术、准好氧填埋技术、循环式准好氧填埋的原理、结构及各自的优缺点,据此指出我国今后垃圾填埋技术的研究方向。  相似文献   

2.
城市垃圾渗滤液场内循环处理的探讨   总被引:10,自引:0,他引:10  
本文对城市垃圾渗滤液的产生量、水质特征及其影响因素进行了分析,介绍了当前国内外垃圾渗滤水场内循环处理的两大研究流派-以欧美国家为主的生物反应器填埋技术和以日本为主的循环式准好氧填埋技术。根据我国城市垃圾有机物含量高的特点,提出了适合我国国情的、将准好氧填埋技术与生物反应器填埋技术特点相结合的城市垃圾填埋场渗波液场内循环处理的设计思路。  相似文献   

3.
采用新研制的上旋流厌氧反应器/两级好氧组合工艺处理PTA废水,调试运行效果表明,当原水CODCr浓度在8000~14,000mg/L时,处理后出水CODCr在80~100mg/L。调试期间,上旋流厌氧反应器的处理效率可稳定达到80%以上。  相似文献   

4.
兼氧膜生物反应器处理养殖废水技术   总被引:1,自引:0,他引:1  
《中国环保产业》2014,(10):71-71
由江西金达莱环保股份有限公司开发的兼氧膜生物反应器处理养殖废水技术,适用于畜禽养殖废水、生活污水和各类工业有机废水处理。主要技术内容 一、基本原理 通过污泥培养,兼氧膜生物反应器(MBR)内部污泥质量浓度可达1.5万~2万mg/L,形成以高效兼性厌氧菌(约占80%)为优势菌种的特性微生物体系。  相似文献   

5.
洪大林  刘丹 《四川环境》2006,25(2):1-2,5
通过室内模拟试验,在渗滤液回灌的厌氧填埋柱基本进入稳定状态后,改用准好氧运行方式。同时监测了渗滤液中有机物浓度以压温度、pH值的变化。改变模拟垃圾柱的运行方式两个月以后。氨氯浓度由2000mg/L迅速下降至101.48mg/L,试验结果显示,准好氧运行方式可以解决生物反应器填埋场进入稳定阶段后存在的氨氮浓度高的问题,加速填埋场的稳定。  相似文献   

6.
好氧颗粒污泥技术   总被引:1,自引:0,他引:1  
王瑛  杨冠  董丽  魏戈 《四川环境》2008,27(6):77-80
好氧颗粒污泥技术是近几年来发展起来的废水处理技术,它能有效地去除废水中的有机物、COD、氨氮、难降解的有毒有机物、硫磷、重金属离子等。本文根据国内外对其的最新研究成果对好氧颗粒污泥的特性、形成的主要影响因素以及除污功能进行了阐述。  相似文献   

7.
好氧生物流化床技术研究进展   总被引:1,自引:0,他引:1  
对好氧生物流化床技术的工作原理和发展概况进行了简介,重点阐述了部分新型好氧生物流化床反应器的结构特点,并对好氧生物流化床技术存在的问题及发展前景做了研讨。  相似文献   

8.
《中国环保产业》2009,(6):F0004-F0004
牧羊环保主要从事市政污水、工业废水以及垃圾渗滤液处理工程的设计、供货、安装及调试,生产和销售除尘设备、生物除臭装置、高效射流曝气装置等环保设备。并提供环保技术咨询服务。集团四十多年创新取胜,开发出“高效厌氧(UASB,EGSB、ABR等)-好氧系统(CASS、MBR等)”技术。与清华大学合作开发的“高效好氧生物反应器——膜生物反应器(MBR)”更是在业内较早实现了在啤酒、PTA、聚酯等工业废水中的大规模应用。  相似文献   

9.
《中国环保产业》2014,(11):71-71
由江西金达莱环保股份有限公司开发的兼氧膜生物反应器处理养殖废水技术,适用于畜禽养殖废水、生活污水和各类工业有机废水处理。  相似文献   

10.
计算流体动力学(CFD)是对气升式环流反应器进行数值模拟的重要手段.为此,本文综述了CFD模拟概况及气升环流反应器中流体数值模拟研究进展,总结了目前CFD模拟气升环流反应器存在的问题,并提出了进一步的研究方向.  相似文献   

11.
In this study, regression analysis based an estimation model for biogas generated from an up-flow anaerobic sludge blanket (UASB) reactor treating landfill leachate is developed using several leachate parameters, such as pH, conductivity, total dissolved solids, chemical oxygen demand, alkalinity, chloride, total Kjeldahl nitrogen, ammonia, total phosphorus. These landfill leachate parameters are monitorized over a period of 1000 days at 35 ± 1°C in the UASB reactor. In order to develop the best model giving highest estimation performance, eight model equations including different input parameter combinations are analyzed. Based on the results of regression analysis, the best coefficients of the model equation are determined. As a conclusion, the developed model in this study can give accurate biogas amount prediction for the USAB reactor-based leachate treatment system.  相似文献   

12.
微孔扩散管曝气试验   总被引:2,自引:0,他引:2  
廖太平  毛建萍 《四川环境》1998,17(4):52-54,57
本文综术字在污水处理站使用离心鼓风机穿孔管大气泡浅 支暴气所引起的溶解氧不足。  相似文献   

13.
本文研究UASB反应器处理石灰法制浆的草浆蒸煮黑液,在较短时间内培养出首育良好沉淀性能和较高活性的厌氧颗粒污泥。并对其形态、结构和化学组份及不同生理类群的厌氧微生物特性等进行了观察和测试,结果表明厌氧颗粒污泥高活性的原因。为进一步探索厌氧颗粒污泥的形成机理提供了依据。  相似文献   

14.
ABSTRACT: A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards.  相似文献   

15.
烟气脱硫喷淋塔气体旋流实验研究   总被引:10,自引:0,他引:10  
提出在烟气脱硫喷淋塔烟气进口设置导流板或采用切向进口,使烟气在塔内螺旋流动,以延长停留时间,加强气液湍动接触,并可改善系统的负荷调节适应能力。对不同进口结构的塔内流速分布、压力损失进行了实验研究,得出了旋流强度、压力损失等随导流板角度的变化关系,并将旋流情况与常规的直流进行了比较。  相似文献   

16.
Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel, avoiding direct contact between air and fuel. Thus, CO2 and H2O are inherently separated from the rest of the flue gases and the carbon dioxide can be obtained in a pure form without the use of an energy intensive air separation unit. The paper presents results from a 3-year project devoted to developing the CLC technology for use with syngas from coal gasification. The project has focused on: (i) the development of oxygen carrier particles, (ii) establishing a reactor design and feasible operating conditions and (iii) construction and operation of a continuously working hot reactor. Approximately, 300 different oxygen carriers based on oxides of the metals Ni, Fe, Mn and Cu were investigated with respect to parameters, which are important in a CLC system, and from these investigations, several particles were found to possess suitable qualities as oxygen carriers. Several cold-model prototypes of CLC based on interconnected fluidized bed reactors were tested, and from these tests a hot prototype CLC reactor system was constructed and operated successfully using three carriers based on Ni, Fe and Mn developed within the project. The particles were used for 30–70 h with combustion, but were circulated under hot conditions for 60–150 h.  相似文献   

17.
在开放的光催化反应器中,以紫外(UV)光为光源,以二氧化钛为催化剂,研究了不同水质条件下对模拟丙烯腈(AN)污水中化学需氧量(COD)的控制效果及主要影响因素。结果表明,UV光-TiO2催化体系对AN污水中COD具有良好的去除效果。当在浓度为300mg/L模拟AN污水中投加浓度为20mg/L的二氧化钛及紫外光照射180min时,污水体系中的COD残存率为7.9%。同时,反应过程中不会对环境产生二次污染。  相似文献   

18.
Chemical-looping combustion, CLC, is a technology with inherent separation of the greenhouse gas CO2. The technique uses an oxygen carrier made up of particulate metal oxide to transfer oxygen from combustion air to fuel. In this work, an oxygen carrier consisting of 60% NiO and 40% NiAl2O4 was used in a 10 kW CLC reactor system for 160 h of operation with fuel. The first 3 h of fuel operation excepted, the test series was accomplished with the same batch of oxygen carrier particles. The fuel used in the experiments was natural gas, and a fuel conversion to CO2 of approximately 99% was accomplished. Combustion conditions were very stable during the test period, except for the operation at sub-stoichiometric conditions. It was shown that the methane fraction in the fuel reactor exit gas was dependent upon the rate of solids circulation, with higher circulation leading to more unconverted methane. The carbon monoxide fraction was found to follow the thermodynamical equilibrium for all investigated fuel reactor temperatures, 660–950 °C. Thermal analysis of the fuel reactor at stable conditions enabled calculation of the particle circulation which was found to be approximately 4 kg/s, MW. The loss of fines, i.e. the amount of elutriated oxygen carrier particles with diameter <45 μm, decreased during the entire test period. After 160 h of operation the fractional loss of fines was 0.00022 h−1, corresponding to a particle life time of 4500 h.  相似文献   

19.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. The technique involves the use of an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. A chemical-looping combustion system consists of a fuel reactor and an air reactor. A metal oxide is used as oxygen carrier that circulates between the two reactors. The air reactor is a high velocity fluidized bed where the oxygen carrier particles are transported together with the air stream to the top of the air reactor, where they are then transferred to the fuel reactor using a cyclone. The fuel reactor is a bubbling fluidized bed reactor where oxygen carrier particles react with hydrocarbon fuel and get reduced. The reduced oxygen carrier particles are transported back to the air reactor where they react with oxygen in the air and are oxidized back to metal oxide. The exhaust from the fuel reactor mainly consists of CO2 and water vapor. After condensation of the water in the exit gas from the fuel reactor, the remaining CO2 gas is compressed and cooled to yield liquid CO2, which can be disposed of in various ways.With the improvement of numerical methods and more advanced hardware technology, the time needed to run CFD (Computational fluid dynamics) codes is decreasing. Hence multiphase CFD-based models for dealing with complex gas-solid hydrodynamics and chemical reactions are becoming more accessible. Until now there were a few literatures about mathematical modeling of chemical-looping combustion using CFD approach. In this work, the reaction kinetics model of the fuel reactor (CaSO4 + H2) was developed by means of the commercial code FLUENT. The bubble formation and the relation between bubble formation and molar fraction of products in gas phase were well captured by CFD simulation. Computational results from the simulation also showed low fuel conversion rate. The conversion of H2 was about 34% partially due to fast, large bubbles rising through the reactor, low bed temperature and large particles diameter.  相似文献   

20.
Eight small-scale municipal wastewater treatment plants were evaluated over a period of 19 months in the suburb of Las Rozas in Madrid (Spain). Four plants used compact extended aeration, two used conventional activated sludge, two used conventional extended aeration, one used a rotary biodisc reactor and the other used a peat bed reactor. The best results were obtained from the plants that used conventional technologies and the biodisc. Conventional activated sludge and extended aeration had higher removal efficiencies for ammonia, TSS, COD and BOD(5) and produced good quality final effluents for final disposal in accordance with the discharge standard. Empirical equations that correlated the concentration of dissolved oxygen in the effluents with the efficiencies of TSS, ammonia, COD and BOD(5) removals for all plants evaluated were obtained. The performance of the plants using compact extended aeration was affected more than those using conventional technologies or rotary biodisc when the capacity exceeded that of its initial design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号