首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: To evaluate anthropogenic sedimentation in United States (U.S.) Pacific Northwest coastal streams, we applied an index of relative bed stability (LRBS*) to summer low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program field methods in a probability sample of 101 wadeable stream reaches. LRBS* is the log of the ratio of bed surface geometric mean particle diameter (Dgm) to critical diameter (D*cbf) at bankfull flow, based on a modified Shield’s criterion for incipient motion. We used a formulation of LRBS* that explicitly accounts for reductions in bed shear stress that result from channel form roughness due to pools and wood. LRBS* ranged from ?1.9 to +0.5 in streams within the lower quartile of human riparian and basin disturbance, and was substantially lower (?4.2 to ?1.1) in streams within the upper quartile of human disturbance. Modeling results suggest that the expected range of LRBS* in streams without human disturbances in this region might be generally between ?0.7 and +0.5 in either sedimentary or volcanic lithology. However, streams draining relatively soft, erodible sedimentary lithology showed greater reductions in LRBS* associated with disturbance than did those having harder, more resistant volcanic (basalt) lithology with similar levels of basin and riparian disturbance. At any given level of disturbance, smaller streams had lower LRBS* than those with larger drainages. In sedimentary lithology (sandstone and siltstone), high‐gradient streams had higher LRBS* than did low‐gradient streams of the same size and level of human disturbance. High gradient streams in volcanic lithology, in contrast, had lower LRBS* than low‐gradient streams of similar size and disturbance. Correlations between Dgm and land disturbance were stronger than those observed between D*cbf and land disturbance. This pattern suggests that land use has augmented sediment supplies and increased streambed fine sediments in the most disturbed streams. However, we also show evidence that some of the apparent reductions in LRBS*, particularly in steep streams draining small volcanic drainages, may have resulted in part from anthropogenic increases in bed shear stress. The synoptic survey methods and designs we use appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. More precise field measurements of channel slope, cross‐section geometry, and bed surface particle size would be required to use LRBS* in applications requiring a higher degree of accuracy and precision, such as site‐specific assessments at individual streams.  相似文献   

2.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

3.
Abstract: Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width‐to‐depth ratio, sinuosity, slope, and substrate size. Streams were classified from measurements made by three monitoring groups, with each group fielding multiple crews that conducted two to three independent surveys of each stream. In only four streams (33%) did measurements from all crews in all monitoring groups yield the same stream type. Most differences found among field crews and monitoring groups could be attributed to differences in estimates of the entrenchment ratio. Differences in entrenchment ratio were likely due to small discrepancies in determination of maximum bankfull depth, leading to potentially large differences in determination of Rosgen’s flood‐prone width and consequent values of entrenchment. The result was considerable measurement variability among crews within a monitoring group, and because entrenchment ratio is the first discriminator in the Rosgen classification, differences in the assessment of this value often resulted in different determination of primary stream types. In contrast, we found that consistently evaluated attributes, such as channel slope, rarely resulted in any differences in classification. We also found that the Rosgen method can yield nonunique solutions (multiple channel types), with no clear guidance for resolving these situations, and we found that some assigned stream types did not match the appearance of the evaluated stream. Based on these observations we caution the use of Rosgen stream classes for communicating conditions of a single stream or as strata when analyzing many streams due to the reliance of the Rosgen approach on bankfull estimates which are inherently uncertain.  相似文献   

4.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   

5.
Headwater streams are the primary sources of water in a drainage network and serve as a critical hydrologic link between the surrounding landscape and larger, downstream surface waters. Many states, including North Carolina, regulate activity in and near headwater streams for the protection of water quality and aquatic resources. A fundamental tool for regulatory management is an accurate representation of streams on a map. Limited resources preclude field mapping every headwater stream and its origin across a large region. It is more practical to develop a model for headwater streams based on a sample of field data that can then be extrapolated to a larger area of interest. The North Carolina Division of Water Quality has developed a cost‐effective method for modeling and mapping the location, length, and flow classification (intermittent and perennial) of headwater streams. We used a multiple logistic regression approach that combined field data and terrain derivatives for watersheds located in the Triassic Basins ecoregion. Field data were collected using a standard methodology for identifying headwater streams and origins. Terrain derivatives were generated from digital elevation models interpolated from bare‐earth Light Detection and Range data. Model accuracies greater than 80% were achieved in classifying stream presence and absence, stream length and perennial stream length, but were not as consistent in predicting intermittent stream length.  相似文献   

6.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   

7.
Benthic macroinvertebrate communities in streams adjacent to cornfields, streams where cows had unrestricted access, and reference locations without agriculture were compared to examine the effects of local land use and land use/land cover in the watershed. At each local site, macroinvertebrates and a variety of habitat parameters were measured upstream, adjacent, downstream, and farther downstream of the local land use. A geographic information system (GIS) was used to calculate drainage basin area, land use/land cover percentages in each basin, and the distance from sample sites to the stream source. Three‐way analysis of covariance (ANCOVA) tests with date, site type, and sampling location as main effects were used to explore differences in macroinvertebrate metrics using median substrate size, percent hay/pasture area, and stream depth as covariates. The covariates significantly improved model fit and showed that multiple contributing factors influence community composition. Local impacts were greatest at sites where cows had access, probably because of sedimentation and embeddedness in the substrate. Differences between the upstream and the adjacent and downstream locations were not as great as expected, perhaps because upstream recolonization was reduced by agricultural impacts or because of differences in the intensity or proximity of agriculture to riparian areas in the watershed. The results underscore the importance of both local and watershed factors in controlling stream community composition.  相似文献   

8.
ABSTRACT: Activities such as agriculture, silviculture, and mining contribute nonpoint pollution to Alabama's streams through polluted runoff and excessive sedimentation. Highly erodible soils characteristic of the Choctawhatchee‐Pea Rivers watershed, combined with intense rainfall and land use practices, contribute large amounts of sediment to streams. Biological monitoring can reflect the acute impacts of pollutants as well as prolonged effects of habitat alteration, and development of biological criteria is important for the establishment of enforceable laws regarding nonpoint source pollution. Macroinvertebrates were collected from 49 randomly selected sites from first through sixth‐order streams in the Choctawhatchee‐Pea Rivers watershed and were identified to genus level. Thirty‐eight candidate metrics were examined, and an invertebrate community index (ICI) was calibrated by eliminating metrics that failed to separate impaired from unimpaired streams. Each site was scored with those metrics, and narrative scores were assigned based on ICI scores. Least impacted sites scored significantly lower than sites impacted by row crop agriculture, cattle, and urban land uses. Conditions in the watershed suggest that the entire area has experienced degradation through past and current land use practices. An initial validation of the index was performed and is described. Additional evaluations of the index are in progress.  相似文献   

9.
ABSTRACT: The level of macroinvertebrate community impairment was statistically related to selected basin and water-quality characteristics in New Jersey streams. More than 700 ambient biomonitoring stations were chosen to evaluate potential and known anthropogenic effects. Macroinvertebrate communities were assessed with a modified rapid-bioassessment approach using three impairment ratings (nonimpaired, moderately impaired, and severely impaired). Maximum-likelihood multiple logistic-regression analysis was used to develop equations defining the probability of community impairment above predetermined impairment levels. Seven of the original 140 explanatory variables were highly related to the level of community impairment. Explanatory variables found to be most useful for predicting severe macroinvertebrate community impairment were the amount of urban land and total flow of municipal effluent. Area underlain by the Reading Prong physiographic region and amount of forested land were inversely related to severe impairment. Nonparametric analysis of variance on rank-transformed bioassessment scores was used to evaluate differences in level of impairment among physiographic regions and major drainage areas simultaneously. Rejection of the null hypothesis indicated that the levels of impairment among all six physiographic regions and five major drainage areas were not equal. Physiographic regions located in the less urbanized northwest portion of New Jersey were not significantly different from each other and had the lowest occurrence of severely impaired macroinvertebrate communities. Physiographic regions containing urban centers had a higher probability of exhibiting a severely impaired macroinvertebrate community. Analysis of major drainage areas indicates that levels of impairment in the Atlantic Coastal Rivers drainage area differed significantly from those in the Lower Delaware River drainage area.  相似文献   

10.
The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor’s effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either “good” (i.e., reference) or “poor” (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.  相似文献   

11.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

12.
Landscape Trends in Mid-Atlantic and Southeastern United States Ecoregions   总被引:3,自引:0,他引:3  
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.  相似文献   

13.
Supreme Court cases have questioned if jurisdiction under the Clean Water Act extends to water bodies such as streams without year‐round flow. Headwater streams are central to this issue because many periodically dry, and because little is known about their influence on navigable waters. An accurate account of the extent and flow permanence of headwater streams is critical to estimating downstream contributions. We compared the extent and permanence of headwater streams from two field surveys with values from databases and maps. The first used data from 29 headwater streams in nine U.S. forests, whereas the second had data from 178 headwater streams in Oregon. Synthetic networks developed from the nine‐forest survey indicated that 33 to 93% of the channel lacked year‐round flow. Seven of the nine forests were predicted to have >200% more channel length than portrayed in the high‐resolution National Hydrography Dataset (NHD). The NHD and topographic map classifications of permanence agreed with ~50% of the field determinations across ~300 headwater sites. Classification agreement with the field determinations generally increased with increasing resolution. However, the flow classification on soil maps only agreed with ~30% of the field determination despite depicting greater channel extent than other maps. Maps that include streams regardless of permanence and size will aid regulatory decisions and are fundamental to improving water quality monitoring and models.  相似文献   

14.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   

15.
ABSTRACT: This paper presents a simple methodology, using the entropy concept, to estimate regional hydro logic uncertainty and information at both gaged and ungaged grids in a basin. The methodology described in this paper is applicable for (a) the selection of the optimum station from a dense network, using maximization of information transmission criteria, and (b) expansion of a network using data from an existing sparse network by means of the information interpolation concept and identification of the zones from minimum hydrologic information. The computation of single and joint entropy terms used in the above two cases depends upon single and multivariable probability density functions. In this paper, these terms are derived for the gamma distribution. The derived formulation for optimum hydrologic network design was tested using the data from a network of 29 rain gages on Sleeper River Experimental Watershed. For the purpose of network reduction, the watershed was divided into three subregions, and the optimum stations and their locations in each subregion were identified. To apply the network expansion methodology, only the network consisting of 13 stations was used, and feasible triangular elements were formed by joining the stations. Hydrologic information was calculated at various points on the line segments, and critical information zones were identified by plotting information contours. The entropy concept used in this paper, although derived for single and bivaviate gamma distribution, is general in type and can easily be modified for other distributions by a simple variable transformation criterion.  相似文献   

16.
ABSTRACT: A stochastic estimation of low flow in the upper reaches of streams is needed for the planning, development, and management of water resources and/or water use systems. In this paper, the definition and development procedure for the stochastic flow duration curve is presented and applied to five catchments located in eastern Japan and to two catchments in western Thailand. The probability distribution of N‐year daily discharge data is extracted at various percentages of time for which specified discharges are equaled or exceeded in a water year. Such a distribution is usually represented with a straight line on log‐normal probability paper. However, some of the probability plots for the annual minimum daily discharge are best represented with a straight line on Weibull probability paper. The effectiveness of the stochastic flow duration curve defined for the evaluation of flow regime is illustrated through its application. The ten year probability for the discharge exceeded 97 percent of the time may be recognized as an index of low flow. The recession shape of the lower part of the flow duration curve is dependent on the strength of low flow persistence.  相似文献   

17.
Abstract: This study evaluated biological integrity expectations of fish assemblages in wadeable streams for the Alabama portion of the Choctawhatchee River watershed using a multimetric approach. Thirty‐four randomly selected stream sites were sampled in late spring 2001 to calibrate an index of biotic integrity (IBI). Validation data were collected during the spring 2001, and summer and fall of 2003 from disturbed and least‐impacted targeted sites (n = 20). Thirty‐five candidate metrics were evaluated for their responsiveness to environmental degradation. Twelve metrics were selected to evaluate wadeable streams and four replacement metrics were selected for headwater streams. Scores that ranged from 58 to 60 were considered to be representative of excellent biotic integrity (none found in this study), scores of 48‐52 as good integrity (31% of the sites in this study), 40‐44 as fair (43%), 28‐34 as poor (21%), and 12‐22 as very poor (5%). Of the four stream condition categories (urban, cattle, row crop, and least impacted), the IBI scores for urban and cattle sites differed significantly from least‐impacted sites. Row crop sites, although not significantly different from least‐impacted, tended to have greater variability than the other categories. Lower IBI scores at both urban and cattle sites suggest that the IBI accurately reflects stream impairment in the Choctawhatchee River drainage.  相似文献   

18.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

19.
Abstract: In 2003, we compared two benthic macroinvertebrate sampling methods that are used for rapid biological assessment of wadeable streams. A single habitat method using kick sampling in riffles and runs was compared to a multiple habitat method that sampled all available habitats in proportion of occurrence. Both methods were performed side‐by‐side at 41 sites in lower gradient streams of the Piedmont and Northern Piedmont ecoregions of the United States, where riffle habitat is less abundant. Differences in sampling methods were examined using similarity indices, two multimetric indices [the family‐level Virginia Stream Condition Index (VSCI) and the species‐level Macroinvertebrate Biotic Integrity Index (MBII)], their component metrics, and bioassessment endpoints based on each index. Index scores were highly correlated between single and multiple habitat field methods, and sampling method comparability, based on comparison of similarities between and within sampling methods, was particularly high for species level data. The VSCI scores and values of most of its component metrics were not significantly higher for one particular method, but relationships between single and multiple habitat values were highly variable for percent Ephemeroptera, percent chironomids, and percent Plecoptera and Trichoptera (Hydropsychidae excluded). A similar level of variability in the relationship was observed for the MBII and most of its metrics, but Ephemeroptera richness, percent individuals in the dominant five taxa, and Hilsenhoff Biotic Index scores all exhibited differences in values between single and multiple habitat field methods. When applied to multiple habitat samples, the MBII exhibited greater precision, higher index scores, and higher assessment categories than when applied to single habitat samples at the same sites. In streams with limited or no riffle habitats, the multiple habitat method should provide an adequate sample for biological assessment, and at sites with abundant riffle habitat, little difference would be expected between the single and multiple habitat field methods. Thus, in geographic areas with a wide variety of stream types, the multiple habitat method may be more desirable. Even so, the variability in the relationship between single and multiple habitat methods indicates that the data are not interchangeable, and we suggest that any change in sampling method should be accompanied by a recalibration of any existing assessment tool (e.g., multimetric index) with data collected using the new method, regardless of taxonomic level.  相似文献   

20.
ABSTRACT: A subwatershed base map of 84 hydrologic subregions within the Columbia River Basin (approximately 58,361,000 ha) was developed following hierarchical principles of ecological unit mapping. Our primary objectives were to inspect the relations between direct and indirect biophysical variables in the prediction of valley bottom and stream type patterns, and to identify hydrologic subregions (based on these results) that had similar aquatic patterns for which consistent management practices could be applied. Realization of these objectives required: (1) stratified subsampling of valley bottom and stream type composition within selected sub‐watersheds, (2) identification of direct and indirect biophysical variables that were mappable across the basin and that exerted primary control on the distribution of sampled aquatic patterns, and (3) development of hydrologic subregion maps based on the primary biophysical variables identified. Canonical correspondence analysis indicated that a core set of 15 direct variables (e.g., average watershed slope, drainage density, ten‐year peak flow) and 19 indirect variables (i.e., nine subsection groups, four lithology groups, and six potential vegetation settings) accounted for 31 and 30 percent (respectively) of valley bottom/stream type composition variability and 84 and 80 percent (respectively) of valley bottom/stream type environmental variability within subsamples. The 19 indirect biophysical variables identified were used to produce an ecological unit classification of 7,462 subwatersheds within the basin by a hierarchical agglomerative clustering technique (i.e., hydrologic subregions were identified). Discriminant analysis indicated that 13 direct biophysical variables could correctly assign 80 percent of the subwatersheds to their indirect biophysical classification, thus demonstrating the strong relation that exists between indirect biophysical based classifications (ecological units) and the direct biophysical variables that determine finer‐level aquatic patterns. Our hydrologic subregion classifications were also effective in explaining observed differences in management hazard ratings across all subwatersheds of the basin. Results of this research indicate that ecological units can be effectively used to produce watershed classifications that integrate the effects of direct biophysical variables on finer‐level aquatic patterns, and predict opportunities and limitations for management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号