首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2011年1月~2014年2月上海崇明岛地区颗粒物(PM_(2.5)、PM_(10))的连续监测资料,研究了PM_(2.5)总体分布、季节变化、日变化及浓度频率分布规律,初步分析了逆温、相对湿度、风向风速等气象要素对颗粒物浓度的影响。结果表明:2011~2013年该地区PM_(2.5)平均值分别为24.7,33.6和28.3μg/m~3,均低于PM2.5的年平均浓度限值35μg/m~3,细粒子污染程度较轻。PM_(2.5)浓度日变化幅度不大,呈微弱的单峰型分布,9∶00左右达到一天中的最大值,15∶00左右达到最小值。PM_(2.5)浓度的季节分布特征明显,呈现出冬季春季秋季夏季,一般情况下5月份PM_(2.5)月均浓度值最高,8月份浓度最低。PM_(2.5)日平均浓度有57.9%达到国家空气质量一级标准,有93.4%达到国家空气质量二级标准,超标率为6.6%。对PM_(2.5)与各气象要素进行分析后发现:PM_(2.5)质量浓度在逆温层结稳定、风速小、高湿以及近地面盛行西北到西风这样的静稳天气条件配合高空西北方向上的外来污染物输送,容易造成高浓度的PM_(2.5)污染。  相似文献   

2.
本文利用了1998—2012年中国241个城市的空间面板数据对中国雾霾污染和FDI的区域分布特征及空间溢出效应进行经验考察,结合系统广义矩估计(SGMM)方法构建了动态空间面板模型,采用了Moran’s I和Geary’s C指数对中国FDI与雾霾(PM_(2.5))污染空间自相关性进行了全域和局域分析。结果发现:(1)雾霾(PM_(2.5))污染与FDI存在显著的空间正相关性,证明了雾霾(PM_(2.5))污染空间的溢出效应以及FDI的辐射效应的存在。同时FDI高值集聚区域一般是雾霾(PM_(2.5))高值集聚区,FDI低值集聚区域一般是雾霾(PM_(2.5))低值集聚区,表明一个地区的引资效果和雾霾(PM_(2.5))污染在地理上的集聚密切相关。雾霾(PM_(2.5))污染表现出显著的"叠加效应"和"溢出效应",说明中国雾霾(PM_(2.5))污染在空间维度、时间维度以及时空维度上分别表现出交叉、累积、持续的演变特征。(2)全样本下,FDI对雾霾(PM_(2.5))浓度的影响表现出增促效应。FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.011%。(3)分地区样本下,东部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.001 9%;中部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.018 3%;而西部城市FDI存量对雾霾(PM_(2.5))浓度影响不显著。上述实证结果说明中国雾霾污染存在着显著的空间依赖性和区域异质性,FDI对中国大部分城市的雾霾污染存在显著的增促效应。  相似文献   

3.
根据济南市2010—2017年空气质量监测数据,分析近年来济南市空气质量状况、颗粒物(PM_(10)、PM_(2.5))污染物浓度变化情况以及重污染天气特征,并利用MARGA离子在线分析仪ADI 2 080分析2016年12月16日—12月30日重污染期间济南市PM_(2.5)组分谱特征。结果表明:2010-2017年,济南市环境空气质量持续改善,环境空气质量以良至轻度污染为主,至2017年济南市环境空气综合指数为6.95,但重污染比例依然很高,且颗粒物(PM_(2.5)和PM_(10))作为首要污染物的比例高达81%,颗粒物污染(特别是细颗粒物污染)仍是济南市环境空气质量污染的主要污染因素,尤其是在冬季采暖季,重污染天气仍在频发,重污染过程中硝酸盐、硫酸盐为主导贡献组分。  相似文献   

4.
长江经济带PM_(2.5)时空特征及影响因素研究   总被引:1,自引:0,他引:1  
大气细颗粒物(PM_(2.5))因其对空气环境质量乃至人类健康的巨大危害而逐渐引起学者们的关注。本文以我国综合实力最强、战略支撑作用最为突出的区域之一——长江经济带为研究对象,基于城市级空气质量监测数据,运用地理学时空分析与GIS可视化方法探索并呈现了2015年长江经济带PM_(2.5)的时空分布特征及其演变规律;在此基础上,结合空间回归模型考察了PM_(2.5)浓度与区域城市发展之间的内在关系。结果表明,就空间特征而言,长江中下游地区PM_(2.5)污染较长江上游地区更为严重,长江北岸地区比长江南岸地区更为严重;PM_(2.5)高浓度集聚地带主要位于鄂皖苏大部分地区,与空气质量较佳的云南及其周边地区呈"对角"分布状态。长江经济带内城市间PM_(2.5)浓度存在着显著的正向空间自相关,且自相关性随距离增大而不断减弱,其门槛尺度约为900 km;在这一范围内,PM_(2.5)空间集聚效应较为明显。就时间特征而言,冬季PM_(2.5)浓度相对较高,春秋两季次之,夏季空气质量最好;各地区浓度分布在年初相对离散,后有所趋同。此外,PM_(2.5)与其他类型的大气污染物(如SO2、NO2、O3)浓度两两之间均存在着显著的正相关性,暗示大气污染物从原发污染演变为二次污染,形成恶性循环。空间回归分析结果表明,PM_(2.5)污染随经济发展水平的提高呈现先上升后下降的趋势,在一定程度上支持了"环境库兹涅兹曲线"假说;且人口密度、公共交通运输强度均在不同程度上导致长江经济带PM_(2.5)浓度的升高。最后,从区域性联防联控、不同类型大气污染物协同治理、促进经济发展方式转型等方面为长江经济带的大气环境治理提出切实可行的政策建议。  相似文献   

5.
利用2017年合肥市污染监测站点PM_(2.5)浓度数据、气象数据以及土地利用类型数据,结合随机森林算法(RF)与土地利用回归模型(LUR),模拟合肥市PM_(2.5)浓度空间分布,并利用主成分分析法对PM_(2.5)影响因素进行分析。结果表明:(1)合肥市PM_(2.5)浓度日变化特征大致呈双峰变化,春季、夏季及秋季的峰值多出现在8∶00~9∶00,而冬季的峰值则出现在10∶00~11∶00。低谷值大致都出现在15∶00~17∶00。全年PM_(2.5)浓度变化趋势与春季类似。夏季PM_(2.5)浓度变化最为平稳。(2)2017年合肥市PM_(2.5)浓度分布由城市中心向外减弱,形成北高南低,西高东低的空间分布格局。(3)影响因素方面,PM_(2.5)浓度变化与降水、风速以及相对湿度等呈负相关关系,日照对PM_(2.5)浓度的影响较大,气压及其他污染物与PM_(2.5)浓度呈正相关关系,其中NO_2对PM_(2.5)浓度的影响力度较大。  相似文献   

6.
大气污染,特别是细颗粒物(PM_(2.5))污染,对人类生产生活造成极大负面影响,是全球共同关注的热点问题,也是我国社会经济高质量发展所面临的巨大考验。环境吸收能力是大气环境系统自身结构与功能健康的保障,对人类在生产生活过程中产生的大气污染物的自动容纳、吸收和消化等作用不容忽视。了解环境中各要素对PM_(2.5)的吸收能力,深入探索环境吸收能力对PM_(2.5)浓度的影响,对开拓大气污染治理新思路有重要意义。文章选用2004—2017年全国30个省、自治区、直辖市的面板数据,从自然资源禀赋和人类活动影响两个维度构建指标体系测算环境吸收能力指数,并通过面板回归模型、基于MCMC优化的广义面板分位数回归技术和情景分析探讨了环境吸收能力对PM_(2.5)浓度影响及其异质性效应。研究发现:(1)全国环境吸收能力整体水平偏低,且区域间环境吸收能力差异较大。环境吸收能力受自然条件与人类活动的共同影响,自然条件禀赋是影响环境吸收能力强弱的主要因素,人类活动影响是造成环境吸收能力指数波动和地区间差异的主要因素。(2)从总体回归结果来看,环境吸收能力的增强对PM_(2.5)浓度的降低有显著负向影响,在PM_(2.5)浓度较高的地区,环境吸收能力的作用更加明显,但其影响效应不会必然随着PM_(2.5)浓度的上升而增加,并且在极端情况下,影响效应并没有通过显著性检验。(3)从异质性效应分析结果来看,在可持续情景和紧急情景下,环境吸收能力对PM_(2.5)浓度的作用显著为负,而在悲观情景下,环境吸收能力的作用并未体现。研究结论为我国大气污染防治和环境质量改善有重要启示作用。  相似文献   

7.
大气污染物的源排放是形成灰霾天气的内因,气象条件是形成灰霾天气的外因。本研究通过构建PM_(2.5)浓度的两段式分布滞后模型,结合自然环境因素及经济因素对PM_(2.5)的影响因素进行了综合分析。在第一段模型中构建了PM_(2.5)和大气污染物排放量的分布滞后模型,第二段模型中构建了不同的大气污染源对大气污染物排放量的影响因素模型。大气污染物排放源主要包括工业源、生活源、机动车源、集中式污染治理设施源。在工业源中,工业废气重度污染行业是大气污染物排放主要的贡献者;在生活源中,燃煤消费量对大气污染物排放影响很大,这也是冬季供暖期间PM_(2.5)剧增的原因;在机动车源中,尽管黄标车的保有量仅占汽车保有量的10%左右,但却占据了颗粒物排放量的绝大部分。利用京津冀代表性城市PM_(2.5)日度数据研究得出平均气温、平均风速、日照时数、平均气压、降雨量、平均相对湿度、沙尘暴等因素对PM_(2.5)浓度的负向与正向作用。研究发现,大气污染物排放量对PM_(2.5)浓度具有聚集的滞后效应,当期大气污染物排放量、滞后一期、滞后两期、滞后三期大气污染物对PM_(2.5)浓度具有显著的正向作用,且影响依次递减。构建的大气污染物排放量的污染源影响因素模型揭示一个地区煤炭消费量、工业废气重度污染行业工业增加值、黄标车保有量对该地区大气污染物排放量具有显著影响。本研究对优化能源消费结构和产业结构,减少空气污染物排放提出了对策建议。  相似文献   

8.
基于长时间序列的遥感反演PM_(2.5)数据,采用Theil-Sen median趋势分析、Mann-Kendall、R/S和相关系数分析法,分析了1998~2014年我国PM_(2.5)时空格局、空间变化特征以及污染来源。结果表明:1998~2014年期间,最高只有24.67%的国土面积上,PM_(2.5)浓度达到世界卫生组织(WHO)的年平均准则值10μg/m~3的要求;PM_(2.5)浓度小于10μg/m~3地区主要是青藏高原、台湾、北疆,内蒙古北部和黑龙江西北部,年均PM_(2.5)浓度大于95μg/m~3的地区主要是南疆和华北平原。1998~2014年期间,全国61.84%的国土面积PM_(2.5)浓度呈上升趋势,平均上升了3.91μg/m~3,上升最大值为39.1μg/m~3。其中,呈显著上升的地区主要分布在中西部地区和华北平原,且未来部分地区仍呈增长的趋势。PM_(2.5)浓度上升的驱动因素包括自然因素与人类活动排放,其中,南疆的PM_(2.5)主要来自塔克拉玛干沙漠的沙尘气溶胶,而其他地区PM_(2.5)主要来自人类活动排放。  相似文献   

9.
科学识别PM_(2.5)的空间分异及其驱动因素,是实现区域空气污染治理的关键。以国测点日均PM_(2.5)浓度为数据来源,基于多种空间分析方法,研究长江三角洲城市群PM_(2.5)浓度的时空演变及影响因素。结果发现:(1)2013~2017年,长江三角洲城市群的PM_(2.5)年平均浓度,处于不断下降的趋势;城市间的差异,呈现逐渐减少的趋势。(2)一年中,12月份的PM_(2.5)浓度最高,8月份的PM_(2.5)浓度最低。1~12月,PM_(2.5)浓度先减后增。(3)2013年,PM_(2.5)高浓度区域主要分布在江苏省;2017年,PM_(2.5)高浓度区域主要分布在安徽省。5年间,PM_(2.5)浓度的空间重心,向安徽省转移72 km。(4)长江三角洲城市群PM_(2.5)浓度存在明显的空间自相关。存在PM_(2.5)浓度高-高值区、低-低值区"扎堆"现象,且集聚程度趋于增大。(5)影响PM_(2.5)浓度的因素包括了自然因素和社会因素。自然因素中,降雨与PM_(2.5)浓度显著相关。社会因素主要来自工业排放、交通排放和能源消耗。其中,能源消耗的影响程度最大,工业排放次之,交通排放最后。  相似文献   

10.
以郴州市四个环境空气自动监测点位为依据,对环境空气中的PM_(2.5)和NO_2浓度数据进行了相关性分析。结果表明,PM2.5和NO_2浓度的季节性变化较大,且两者的变化规律一致,四季浓度大小为春季冬季秋季夏季;在一天内,不同点位的NO_2和PM_(2.5)的浓度相关性不同,在城区内部受汽车尾气的影响较大,两者的变化趋势基本一致,在城区外围受道路扬尘、建筑施工和汽车尾气的综合影响,PM_(2.5)和NO_2的浓度相关性较低。  相似文献   

11.
利用2010—2016年济南市环境空气质量监测数据,分析了济南市PM_(2.5)的年变化、月变化、日变化和区域分布特征。结果表明:(1)跑马岭监测点(远离市区的清洁对照点)PM_(2.5)浓度呈逐年下降的趋势,其余监测点PM_(2.5)的浓度均在2013年达到峰值后逐渐下降。(2)济南市冬季污染最重,1月达到最高;夏季污染最轻,8月达到最低。(3)PM_(2.5)平均浓度有两个高值中心,不同季节PM_(2.5)高值中心有所不同。(4)夏季,有无逆温时PM_(2.5)差异较小且日变化不明显;冬季,有无逆温时PM_(2.5)差异最大。  相似文献   

12.
利用常规观测资料及激光雨滴谱仪观测资料对2013年廊坊地区两次降水过程雨滴微物理参量进行对比分析,结果表明:两次降水过程降水云系不同,雨滴谱特征也有显著的差异,而降水雨强与雷达回波强度、粒子数浓度的演变基本一致;两次降水过程中0-2mm的粒子对总数浓度、总雨强的贡献很大;通过检验分析发现标准的Z-I关系对雨强较弱的层状云降水估测效果较好,低估了雨强较大的积状云、混合云降水。  相似文献   

13.
基于全球大气PM_(2.5)年均浓度栅格数据集,采用重力模型、变异系数和探索性空间数据分析等方法,从区域、省域、市域、县域和栅格等多个尺度,对长江经济带PM_(2.5)时空演化特征进行系统分析。结果发现:(1)1998~2016年,长江经济带PM_(2.5)年均浓度均高于全国平均水平,且大体呈"倒U型"变化趋势,2005年是长江经济带PM_(2.5)年均浓度变化的重要拐点;(2)长江经济带PM_(2.5)的时空演化表现出显著的空间尺度效应,在不同空间尺度上,PM_(2.5)年均浓度的空间分异特征具有明显差别,但其空间差异均呈扩大态势;(3)长江经济带PM_(2.5)年均浓度存在显著的空间正相关性,且主要表现为高值集聚特征。  相似文献   

14.
PM_(2.5)引发的雾霾污染对人体健康和社会可持续发展产生了严重威胁,已成为中国经济快速发展地区共同面临的问题。长三角是中国城市化进程最快、空气污染最为严重的地区之一,探寻该地区土地利用景观格局变化对PM_(2.5)的影响规律,有助于对PM_(2.5)"源""汇"景观的空间格局进行合理配置,也可以为污染防治决策提供科学依据。本文运用重心模型、冷热点分析和景观指数,探讨了该区域1995—2015年PM_(2.5)浓度的时空分布特征以及景观格局的变化规律,并使用岭回归方法分析了建设用地、林地、耕地和水体四种土地利用类型的景观格局在行政区尺度和外接圆尺度上对PM_(2.5)浓度的影响。结果显示:①1995—2015年长三角地区PM_(2.5)浓度总体呈上升趋势,并且具有"北高南低"和"南缓北急"空间分异特征。②长三角区域内建设用地面积大幅上升,且呈聚合状发展,而林地和耕地面积却在不断减少,并呈破碎状分布。③建设用地和林地分别是PM_(2.5)的"源"景观与"汇"景观,耕地对PM_(2.5)的"源""汇"作用交错,水体对PM_(2.5)无明显的净化作用。④相较于行政区尺度,外接圆尺度下林地PLAND、ED与PM_(2.5)浓度的负相关更为显著,可见对城市周边地区进行景观格局优化能收到更好的效果。研究表明:控制建设用地合理有序增长并采用多中心发展模式,有利于缓解城市主城区的环境压力;提高城市周边区域林地的比重和聚集度或加大林地与建设用地的接触面积,可以有效地减少城市PM_(2.5)浓度;对耕地进行整理使其形成连片化景观,并通过科学的耕作方式减少耕地上农业生产所带来的PM_(2.5)前体物,有助于发挥其对PM_(2.5)的"汇"作用。  相似文献   

15.
黄河流域是推进空气质量改善和经济社会高质量发展的核心区域,技术创新是破解流域PM_(2.5)污染防治难题的关键手段。该研究以2004—2019年黄河流域79个地级市PM_(2.5)污染数据为样本,利用核密度估计、空间自相关等方法探究PM_(2.5)在空间上的异质性和关联性特征,并将以技术创新为核心的社会经济因素和气温、降水等自然解释要素纳入同一空间面板杜宾模型,分析各因素对黄河流域PM_(2.5)的效应及其空间溢出效应,系统识别和甄别技术创新要素在这一过程中的贡献程度和溢出效应,解析技术创新对PM_(2.5)的作用机制与影响路径。研究发现:①黄河流域PM_(2.5)在空间上呈现显著的异质性和相关性,浓度值较高的地市主要集中于漯河、濮阳等黄河流域下游地区,全局Moran’s I指数均大于0.80且显著为正,空间关联以高高集聚和低低集聚类型为主;②专利授权量的增加通过排放源管控治理、移动源消减治理等路径对本地区PM_(2.5)防治具有正向推动作用,但由于绿色技术标准、绿色补贴等绿色技术壁垒的存在加剧了邻近地区污染治理难度,表现为负向空间溢出效应;③流域城市人均创新指数的提升通过营造良好的创新氛围、激发技术创新内生动力等机制同样促进了本地PM_(2.5)浓度下降,但空间溢出效应并不显著,未能对周边地区产生辐射带动作用。研究基于技术创新对PM_(2.5)防治的影响和空间溢出效应提出适应性对策建议,突出技术创新在空气污染防治中的关键作用,搭建和完善跨区域绿色技术创新体系,加强流域间联防联控机制与竞争合作机制,助推黄河流域空气质量改善、生态保护和高质量发展。  相似文献   

16.
大气污染防治行动计划》被认为是史上最严格的一项空气污染治理政策。主要目标是控制区域PM_(2.5)和PM_(10)等污染物的排放量,明确规定了全国地级及以上城市可吸入颗粒物浓度比2012年下降10%以上,该政策始于2013年9月,于2017年底结束。为了科学检验《大气十条》的政策影响效应,选取该政策执行期间(2013—2017年)的125个地级及以上城市,包括72个处理组和53个控制组进行准自然试验,运用双重差分法检验该政策对控制主要空气污染物PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3月均排放量的影响,并运用平行趋势检验、反事实检验等方法进行了稳健性检验。描述性统计结果显示:PM_(2.5)、PM_(10)、SO_2、NO_2和CO的月均排放量都得到了显著降低,其中PM_(2.5)和PM_(10)的降幅分别是36.33%和31.87%。京津冀、长三角、珠三角等区域PM_(2.5)浓度分别下降39.6%、34.3%、27.7%,三大区域PM_(10)的降幅分别为38.3%、31.1%、21.9%,其中,北京市PM_(2.5)月均浓度为57.33μg/m~3。但是O_3的排放量下降效果不显著,其含量不降反增,成为我国空气质量新的威胁。回归结果说明,该政策对试点城市大气中PM_(2.5)、PM_(10)、SO_2、NO_2和CO的排放量下降产生了显著影响,在1%显著性水平上,月均浓度分别下降685.14%、650.72%、479.05%、359.55%和7.06%。因此,总体上可以认为该项政策已经达标完成,控制了主要空气污染物的排放量。但是分解不同污染物、分区域或者是具体到不同城市的空气质量绝对值仍未达到国家控制标准。最后提出执行科学精细的空气质量监督管理制度和空气污染治理的长效政策等建议。  相似文献   

17.
基于环境承载力的京津冀雾霾治理政策效果评估   总被引:2,自引:0,他引:2  
雾霾污染治理是京津冀协同发展需要解决的重大问题。2013年9月颁布的"大气污染防治行动计划(大气国十条)"明确提出了京津冀地区雾霾治理目标,各地区也制定了雾霾污染治理的政策措施。本文旨在环境承载力分析的基础上评估雾霾治理的政策效果。首先,分析了京津冀地区大气环境污染特征,并结合相关文献确定京津冀地区雾霾治理的主要影响因素为污染物排放、风力以及相邻地区的传输效应等;其次,将影响PM_(2.5)浓度主要因素进行统计建模,并采用分位数回归模型进行矫正,大大提高模型的拟合精度;再次,基于大气国十条规定的京津冀各地区的PM_(2.5)年均浓度目标计算各地区的大气环境承载力;最后,在假定风力等气象条件不变的情况下,根据大气国十条规定的京津冀地区的污染物排放量利用统计模型模拟2017年的雾霾污染水平,模拟除张家口、承德和秦皇岛以外其余10个地区年均浓度60μg/m~3和70μg/m~3目标下PM_(2.5)日均浓度发生频率的变化情况,评估和讨论大气国十条提出的京津冀雾霾治理目标。结果表明:按照大气国十条减排计划的京津冀地区污染物排放量普遍高于其PM_(2.5)浓度目标下的大气环境容量(邯郸市除外),即大气国十条所规定的减排措施难以实现既定的PM_(2.5)浓度目标;PM_(2.5)年均浓度目标从60μg/m~3上升到70μg/m~3,重污染天气发生频率上升有限,大气污染物的减排量却显著下降。因此,要实现既定的雾霾浓度控制目标,天津和河北需要进一步加大污染物减排力度;雾霾治理应注重减少重污染天气的发生频率,治理重点应转向重度雾霾发生频率较高的冬季污染物排放控制;在科学确定环境承载力的基础上,确定切实可行的PM_(2.5)浓度控制目标,制定具有可操作性的污染物减排计划。  相似文献   

18.
空间结构是城市群发展在空间维度的反映,并且对经济、社会、环境可产生溢出效应。随着大气污染逐渐制约城市群生态文明建设和高质量发展,亟须探索城市群空间结构对大气污染的影响。作者以我国19个城市群为研究对象,采用2000—2016年面板数据,通过位序-规模法则测度的中心度指数反映城市群空间结构,运用遥感影像反演的PM_(2.5)浓度反映大气污染状况,使用固定效应模型分析城市群空间结构对大气污染的影响。研究结果表明:第一,我国城市群空间结构具有明显的多中心化特征。其中,长江三角洲、珠江三角洲、京津冀、成渝、中原、关中平原、山东半岛、辽中南、海峡西岸、哈长、宁夏沿黄、长江中游、呼包鄂榆城市群是多中心空间结构,黔中城市群由单中心演化为多中心,只有滇中、晋中、北部湾、天山北坡、兰西城市群是单中心空间结构。第二,城市群PM_(2.5)浓度均值演化呈现出先上升、后下降的倒U形特征。其中,长江三角洲、珠江三角洲、成渝、黔中、山东半岛、海峡西岸、晋中、北部湾、长江中游、兰西城市群PM_(2.5)浓度呈现倒U形演化特征,京津冀、中原、关中平原城市群PM_(2.5)浓度呈现N形演化特征,滇中、呼包鄂榆、宁夏沿黄、天山北坡城市群PM_(2.5)浓度持续保持在较低水平。第三,城市群空间结构对大气污染的影响呈现出线性负相关关系,提高中心度可以减少大气污染。这也在一定程度上说明了中国城市群空间结构的多中心化是造成大气污染的原因之一。  相似文献   

19.
采用武汉市1958~2013年逐日探空风资料,利用离差系数、气候倾向率、小波分析、Yamoto突变检验(信噪比指数)等方法,系统揭示该地低空(500、1 000、1 500、2 000 m)年、季、月平均风速的周期性与非周期性变化,通过指数曲线拟合揭示风速随高度变化特征。结果表明:(1)各层月平均风速均为双峰双谷型,7月、3~4月为峰,6月、9~10月为谷,7月达7.0~8.1m/s,谷值仅5.4~5.9m/s,即春夏季风速大,秋季小;(2)风速随高度上升呈线性或指数增加,地面至500m年、季平均风速增加约3.8~4.0m/s(地面仅约2.0m/s),a为0.241~0.294,从500m到2 000m年平均风速从5.9m/s升到6.9m/s,其中冬春季快,秋季慢,风廓线指数a为0.066~0.170;(3)各层年平均风速均呈减小趋势,1 500m、2 000m层达显著,每10a分别减小0.063m/s和0.074m/s,秋季减小显著,夏季减少不明显;(4)月平均风速离差系数为双峰双谷型(500 m为单峰型除外),主峰6~8月离差系数达0.15以上,1月为次峰,这些月风速年际变化大;(5)各层年平均风速周期均有12~30a(2 000m除外)、2~4a,500m层则为7~8a(仅1960’s),前者对应夏秋季,后者对应冬春季;(6)年、季平均风速均在1983~1986年突变上升和1991~1993年突变下降,且突变次数随高度减少,500m层最多,2 000m层除秋季外无突变。深刻认识这些特征可为本地区山区风电场规划、选址、设计、运营提供技术支撑。  相似文献   

20.
为打好环境污染防治攻坚战,促进经济高质量发展,中国各级政府不断加大环境污染的防治力度。首先,文章采用2003—2018年中国260个地级市的面板数据,运用共同前沿技术和Hybrid-Dynamic-DEA模型测算了中国城市层面的PM_(2.5)减排效率。其次,在考察了不同城市要素禀赋结构存在异质性的基础上,深入分析了经济发展水平对中国城市PM_(2.5)减排效率的影响。研究结果显示:(1)中国PM_(2.5)减排效率整体偏低,年均值仅为0.126,大气污染减排压力巨大。(2)样本期内中国PM_(2.5)减排效率呈现出缓慢上升再下降的过程。区域间PM_(2.5)减排效率存在明显的区域异质性,表现为东部地区最高,其次是东北部,再次是西部,中部地区最低。(3)从整体来看经济发展水平对PM_(2.5)减排效率具有显著的促进作用。从异质性角度来看,在10%到90%分位数之间经济发展水平对PM_(2.5)减排效率的影响随着分位点的升高而升高。在考虑了PM_(2.5)减排效率的指标更换、外生工具变量的构造等方面后,结果依然稳健。(4)机制研究结果表明城市要素禀赋结构的差异会作用于地区经济发展水平,进而影响到PM_(2.5)减排效率。因此,各地政府要结合各自城市的要素禀赋结构和比较优势,制定适应的大气污染环境治理政策,不能纯粹依靠政府的行政化管理手段,避免采取"一刀切"或"照搬照抄"的环境治理方式;要实施差异化的大气污染环境治理政策,对于东部沿海城市应不断完善产业发展政策,提高自身的环境治理能力。中西部地区城市应加快引进沿海城市的先进管理经验,激励企业进行绿色技术或工艺的改造升级,努力提高经济增长的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号