首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏南水稻土有机碳矿化特征及其与活性有机碳组分的关系   总被引:4,自引:0,他引:4  
通过对江苏省常熟市全市范围代表性水稻土采样并布置室内短期(20d)培育实验,研究土壤有机碳矿化过程动态,并分析其与微生物生物量碳和水溶性有机碳含量的关系。结果表明:研究区域水稻土有机碳含量变化为4.88~27.31g/kg,平均为18.07g/kg,全氮含量变化为0.58~2.84g/kg,平均为1.86g/kg;微生物生物量碳、氮及水溶性有机碳含量分别为294.0~1287.4,18.54~81.78和7.01~28.79mg/kg,且不同土属间存在显著差异(p<0.05);土壤呼吸强度为34.76~191.68mgCO2/(kg·d),平均为79.93mgCO2/(kg·d),不同土属间高低顺序为乌栅土>乌黄泥土>灰黄泥土>白土>黄泥土>乌沙土;培养期内有机碳日均矿化量为10.76~65.20mg-CO2/kg,平均为40.46mgCO2/kg,有机碳累计矿化量为215.25~1302.13mgCO2/kg,平均为807.20mgCO2/kg,不同土属间有机碳日均矿化量和累计矿化量变化趋势为乌栅土>乌黄泥土>乌沙土>白土>灰黄泥土>黄泥土;研究区域水稻土有机碳矿化率为3.07%~7.58%,但不同土属间差...  相似文献   

2.
安徽省土壤氟含量及其赋存特征   总被引:3,自引:0,他引:3  
氟是生态系统中一种重要微量元素,过量和不足都会影响人和动物健康,人体氟主要来自饮水和食物,土壤氟含量、形态以及土壤理化性质等影响着水和食物氟含量。以安徽省主要类型土壤为材料,采用连续化学提取的方法,测定了安徽省主要类型土壤全氟、水溶氟以及不同形态氟含量,分析了土壤氟形态与土壤理化性质的关系。结果表明:安徽土壤全氟含量1066~1 2367 mg/kg,平均为4852 mg/kg,全氟含量高低排序为菜地土>潮土>石灰土>黄棕壤>黄褐土>水稻土>砂姜黑土>黄红壤,成土母质是影响土壤全氟含量的主要因素。土壤水溶氟含量042~2248 mg/kg,平均为338 mg/kg,水溶氟含量高低排序为菜地土>砂姜黑土>潮土>黄棕壤>黄褐土>水稻土>石灰土>黄红壤,北高南低。土壤氟主要赋存形态是矿物态氟,占土壤全氟95%以上,水溶氟、交换态氟、铁锰氧化物结合态氟和有机结合态氟占土壤全氟5%左右。土壤水溶性氟含量与土壤pH呈极显著正相关,与土壤全磷含量呈显著正相关,相关系数分别为0660 2和0353 9,土壤交换态氟与土壤小于0001 mm土粒含量和土壤阳离子交换量呈显著正相关,相关系数分别为0338 4和0345 8,有机结合态氟与土壤有机含量呈极显著正相关,相关系数为0526 8  相似文献   

3.
长江三角洲地区土壤无机碳库研究   总被引:5,自引:0,他引:5  
土壤碳库变化对于全球温室效应、全球碳循环有重大的影响。研究基于最新完成的1〖DK〗∶250 000多目标地球化学调查及相关研究成果,运用地理信息系统软件ARCGIS 92、统计分析软件SPSS130,对长江三角洲地区0~20、0~100、0~180 cm深度土壤无机碳密度及储量做出实测统计。长江三角洲地区0~20、0~100、0~180 cm深度土壤无机碳库储量分别为5099、35647、67726Tg,无机碳密度分别为070、490、930 kg/m2。研究区主要分布土壤为水稻土、潮土,水稻土0~20、0~100、0~180 cm深度土壤无机碳密度分别为057、385、886 kg/m2;潮土无机碳密度分别为117、854 、1537 kg/m2。研究提供最新的土壤无机碳库实测统计信息,弥补中国区域土壤无机碳库清单的空白,完善了中国区域土壤碳库清单,为研究中国区域土壤碳固定潜力、深入全面理解区域碳循环提供了基准数据.  相似文献   

4.
上海城郊大棚蔬菜地土壤总硝化与反硝化作用研究   总被引:2,自引:0,他引:2  
通过BaPS技术对上海城郊大棚蔬菜地土壤总硝化和反硝化作用速率进行了测定,利用因子分析对影响土壤硝化和反硝化的主要因素进行了分析,结果表明:各大棚蔬菜地土壤总硝化、反硝化速率差异性显著(〖WTBX〗p〖WTBZ〗<001),其中土壤总硝化速率为17758~45726 Nug/kg·h,土壤反硝化速率为23151~415 Nug/kg·h,土壤总硝化作用速率与与土壤容重呈显著性负相关(〖WTBX〗p〖WTBZ〗<005),与硝态氮含量呈极显著性正相关(〖WTBX〗p〖WTBZ〗<001),土壤反硝化作用与土壤含水量呈显著性正相关(〖WTBX〗p〖WTBZ〗<005),与土壤有机质、硝态氮呈极显著性正相关(〖WTBX〗p〖WTBZ〗<001)。土壤含水量、土壤有机质含量、土壤硝态氮含量、土壤容重是影响土壤总硝化和反硝化作用的主要因素,四项指标能概括所测定全部指标包含信息的80%以上;土壤硝化作用和反硝化作用对土壤N2O排放的贡献率分别为475%、525%,土壤硝化和反硝化作用均对大棚蔬菜地土壤氮损失产生影响  相似文献   

5.
经营模式对毛竹林生物量、碳贮量具有重要影响。研究了湘中丘陵区毛竹笋用林(Ⅰ)、笋材兼用林 (Ⅱ)和材用林(Ⅲ) 3种不同经营目标下的竹林年龄结构、生物量分配及碳贮量格局。结果表明:应减少1~2 a、增加5~6 a生竹的留养比例,控制达到1~2 a、3~4 a、5~6 a各占1/3左右的立竹年龄结构。不同层次生物量表现为乔木层>凋落物层>林下植被层,毛竹笋用林经营有利于增加乔木层生物量。乔木层生物量及所占比例分别为5183~5566 t/hm2、8895%~9293%,林下植被层生物量及所占比例分别为154~258 t/hm2、258%~443%,凋落物层生物量及所占比例分别为269~386 t/hm2、449%~662%。毛竹林总碳贮量排队顺序为Ⅱ(14263 t/hm2)>Ⅰ(13389 t/hm2)>Ⅲ(13004 t/hm2),笋材兼用林有利于提高竹林碳贮能力。不同层次碳贮量排列顺序总体均表现为土壤层>乔木层>凋落物层>林下植被层。湘中丘陵区毛竹林生物量、碳贮量较低,应提高集约经营水平  相似文献   

6.
亚热带红壤丘陵区湿地松人工林固碳释氧效益研究   总被引:2,自引:0,他引:2  
用标准样方法对19年生湿地松(〖WTBX〗Pinus elliottii〖WTBZ〗)人工林碳素含量及碳贮量进行了测定。结果表明,湿地松各器官的碳素含量在5092±046%~5438±026%之间波动,按碳含量高低排列为树叶>树枝>树干>树根>树皮,且各器官的碳素含量随年龄的增长而提高。不同林冠层枝、叶碳素含量存在差异,上层叶与下层叶的碳素含量较低,下层枝条碳素含量明显比上、中层枝条高。灌木层、草本层、凋落物层的碳素含量依次为4516±04%、4228±041%、4088±031%,土壤层碳素含量平均为043±004%,且随土壤深度的增加而明显递减。湿地松林生态系统碳贮量为12194 t〖DK〗·hm-2,其中乔木层碳贮量为8618 t〖DK〗·hm-2,占总量的7067%,下木层和凋落物层碳贮量分别为06 t〖DK〗·hm-2(049%) 和886 t〖DK〗·hm-2(727%)。林地土壤(0~60 cm)为263 t〖DK〗·hm-2,占总碳贮量的2157%。乔木层年净固碳量为454 t〖DK〗·hm-2,年净释氧量为1212 t〖DK〗·hm-2。采用造林成本法计算得出试区湿地松林平均每年发挥的净固碳释氧效益达9 034元〖DK〗·hm-2。  相似文献   

7.
不同水土保持林地土壤有机碳研究   总被引:6,自引:0,他引:6  
研究了重庆四面山低山丘陵区不同水土保持林地0~20、20~40 和40~60 cm的土壤有机碳含量及不同深度的土壤有机碳密度。结果表明:0~20、20~40 和40~60 cm土层中土壤有机碳含量的平均值分别为3309、751和321 g/kg;0~20 cm的土壤有机碳密度介于497~1431 kg/m2,而0~60 cm的土壤有机碳密度介于784~1794 kg/m2,均值为1278 kg/m2;土壤有机碳含量和有机碳密度随土壤深度增加而显著减少,但其减少程度随水土保持林树种组成不同而异;不同水土保持林地60 cm深度的土壤有机碳密度存在显著差异,表现为:天然次生林>人工林>农耕地,其中,天然阔叶混交林土壤有机碳密度最大,为1794 kg/m2,农耕地的最小,仅为784 kg/m2。人工水土保持林中,阔叶混交林的土壤有机碳密度最大。从增加土壤碳的角度,建议营造阔叶混交林  相似文献   

8.
采用STARS(Sequential 〖WTBX〗t〖WTBZ〗 test analysis of regime shifts),以降水中SO2-4、NO-3以及SO2-4/NO-3为指标,研究了上海地区酸雨类型在1991~2006年的格局转变规律。上海地区降水中SO2-4含量在1991~2006年具有两种格局,2004年发生转变;转变前的SO2-4含量平均12670 mg/L,转变后SO2-4含量大幅度降低,平均6525 mg/L;降水中NO-3含量存在3种格局,两次转变;1996年转变前的NO-3浓度相对较低,平均1842 mg/L;此次转变后升高,平均2622 mg/L;2005年再次发生转变,使得NO-3含量下降,平均1998 mg/L;与NO-3含量的格局类似,SO2-4/NO-3也存在着3种格局,两次转变;1995年转变前,SO2-4/NO-3平均7316;此次格局转变后,SO2-4/NO-3降为5666;2000年的格局转变中SO2-4/NO-3降为3635。表明NO-3对酸雨的贡献逐渐增加,SO2-4对酸雨的贡献逐渐减弱,酸雨类型逐渐由硫酸型酸雨过渡成硫酸和硝酸混合型酸雨,并逐渐接近硝酸型酸雨。上海地区酸雨类型格局在1991~2006年发生5次格局转变,其格局转变指数(RSI)在1995、1996,2000,2004和2005年分别为0826、0260、0959,1378和0066。〖  相似文献   

9.
上海土壤有机碳储量及其空间分布特征   总被引:2,自引:0,他引:2  
区域土壤碳库的估算不仅是陆地土壤碳循环研究的重要内容,同时也可为国家尺度的土壤碳库的估算提供更多的数据支持。利用上海第二次土壤普查资料,结合GIS技术对上海土壤有机碳储量、碳密度及其空间分布格局展开研究,结果表明,上海地区0~100 cm深度的土壤有机碳总储量为576×107 t,占全国的0.062 6%,0~100 cm的平均土壤有机碳密度为1055 kg/m2,高于全国平均值,反映出上海土壤具有较高的碳蓄积能力。各类土壤中,水稻土的土壤碳储量最大,其次是灰潮土和滨海盐土,而黄棕壤由于面积狭小,所以土壤碳储量最小。各类土壤0~100 cm土壤有机碳密度的大小顺序依次为水稻土>灰潮土>黄棕壤>滨海盐土。从空间分布格局来看,上海土壤碳密度呈现为西高东低,在局部范围内还表现出高低相间,错综复杂的局面,这种分布规律在一定程度上体现了地形、微地貌、母质、土地利用方式等因素的影响。而快速的城市化引起的土地利用变化造成了土壤碳库的净碳损失量为39244万t,相当于2000年化石燃料产生的碳排放的9.86%,这表明在经济和城市快速发展地区,土地利用变化已经成为影响土壤碳库的重要驱动力。  相似文献   

10.
不同植茶年限土壤微团聚体及有机碳分布特征   总被引:2,自引:0,他引:2  
采用野外调查和室内分析相结合的方法,就不同植茶年限土壤微团聚体及有机碳分布特征进行了研究。结果表明:(1)茶园土壤微团聚体含量随粒级的减小而减小;>005 mm和005~001 mm粒级微团聚体含量随着土壤深度的加深而增大,而001~0005 mm、0005~0001 mm和<0001 mm粒级微团聚体含量随着土层深度加深而减少;(2)茶园土壤微团聚体有机碳含量随微团聚体粒级的减小而增加;随植茶年限的延长,各粒级微团聚体中有机碳含量增加;不同植茶年限茶园土壤总有机碳含量随土层深度的增加而减少;(3)微团聚体对土壤有机碳的贡献率以>005 mm粒级为主,005~001 mm粒级次之,0005~0001 mm粒级最少。〖JP+1〗随着植茶年限的延长,>005 mm粒级微团聚体对土壤有机碳的贡献率呈减小的趋势,005~001 mm粒级微团聚体对土壤有机碳的贡献率呈增加的趋势,而其它粒级的微团聚体则呈现先增大后减小的变化趋势,并在植茶21~23 a达到最大值  相似文献   

11.
采用野外调查和取样分析相结合的方法,对武汉市郊部分设施蔬菜栽培地土壤盐分特征进行了研究。结果表明:(1)在研究区,轻度盐化土壤占5263%,中度盐化土壤占2105%,重度盐化土壤占526%,另有1579%的设施土壤盐分含量超过了10 g/kg,达到盐土〖JP+1〗的标准。(2)设施栽培土壤的可溶性盐含量与电导率(EC)均明显高于露天栽培菜地及植棉地土壤,且变化幅度大,平均值分别为66 g/kg〖JP〗和031 mS/cm。其中,10.5%的设施土壤表层EC值达到了作物生长障碍临界点(>06 mS/cm)。表层土壤中以NO-3和Ca2+的相对富集为主要特征。(3)盐分的运移同时存在着向下迁移和向表层聚集两种方式,且以表聚为主。除HCO-3外,其它盐分离子的含量随土层深度的增加而有所降低,其中,NO-3、Ca2+累积迁移量较大,在0~100 cm各土层内的含量都高于露天菜地和植棉地,硝酸盐的大量累积和向下迁移势必对地下水造成不利影响。(4)设施地栽培的土壤水溶性盐含量与电导率(〖WTBX〗r=0.951 2*〖KG-*3〗*)以及硝态氮含量(r=0.644 2*)分别呈极显著和显著正相关。〖  相似文献   

12.
鳙幼鱼游泳能力和游泳行为的研究与评价   总被引:1,自引:0,他引:1  
利用自制的鱼类游泳实验装置,采用递增流速法,研究了鳙幼鱼游泳能力和游泳行为。结果表明:鳙标准代谢率SMR实际测定值为18727±545 mgO2/(kg·h),方程拟合值为18281mgO2/(kg·h),实测值与拟合值接近;鳙耗氧率MO2与游泳速度U的拟合方程为MO2=18281+3983 U1.30,耗氧率幂函数方程中U的幂值为130,U的幂值越小游泳效率越高,说明鳙游泳效率较高;鳙临界游泳速度Ucrit为457±056 BL/s,与青鱼近似;鳙疲劳后的耗氧率迅速降低,在疲劳后45~60 min时耗氧率恢复到标准代谢率。鳙EPOC值为10716 mgO2/kg,说明鳙运动疲劳后的恢复能力较高;运动耗能COT与游泳速度相关关系曲线中,在4~6 BL/s时COT较低,说明此时鳙的能量利用效率较高,拟合方程为COT=664 U-1+131 U0.34;通过实验测定,鳙摆尾率TBF和游泳速度相关关系拟合方程为TBF=202+053 U。研究可为鱼道设计提供参考,对鳙保护具有指导意义  相似文献   

13.
鄱阳湖典型苔草湿地生物量季节变化及固碳功能评价   总被引:4,自引:0,他引:4  
为进一步评估鄱阳湖湿地碳平衡,量化湿地固碳功能,于2009年9月~2011年5月,在鄱阳湖南矶湿地国家级自然保护区,选择以灰化苔草为建群种的洲滩湿地,采取收获法测定了灰化苔草4个生长季的地上、地下生物量及净初级生产力(NPP)。结果表明:1)苔草地上、地下生物量均具有明显的季节变化模式,变化范围分别为14608~1 77067 、1 80627~4 03256 g/m2;地下生物量与地上生物量的比例变化范围为208~1744,平均值为519。2)苔草地上地下生物量、NPP均表现为春季高于秋季。3)受洲滩淹水时间影响,苔草生物量、NPP具有显著的年际差异, 2010~2011年度苔草NPP仅相当于2009~2010年度的625%;NPP的下降地上部分较地下部分更明显。4)鄱阳湖湿地苔草固碳潜力巨大,2个年度固碳量分别为1 92383,1 23121 gC/m2  相似文献   

14.
长江三角洲地区土壤有机碳库研究   总被引:1,自引:0,他引:1  
土壤碳库变化对于全球温室效应、全球碳循环有重大的影响。基于新近完成的1:250 000多目标地球化学调查及相关研究成果,运用地理信息系统软件ARCGIS 9.2、统计软件SPSS13.0,对长江三角洲地区0~20、0~100、0~180 cm深度土壤有机碳密度及储量作出实测统计。结果表明:长江三角洲地区0~20 cm土壤有机碳库储量为238.65 Tg,有机碳密度为3.28±0.92 kg/m2,各类型土壤有机碳密度均值介于2.63~3.57 kg/m2;0~100 cm土壤有机碳库储量为822.76 Tg,有机碳密度为11.30±3.48 kg/m2,各类型土壤有机碳密度均值介于9.35~11.94 kg/m2;0~180 cm土壤有机碳库储量为1 245.72 Tg,有机碳密度为17.11±7.04 kg/m2,各类型土壤有机碳密度均值介于14.27~18.00 kg/m2。与第二次土壤普查比较,全区0~20、0~100cm土壤有机碳密度均值都表现为上升趋势,有机碳库储量增加,土壤表现为碳汇功能。提供了新的土壤碳库实测统计信息,为研究中国区域土壤碳固定潜力、深入全面理解区域碳循环提供基准数据。  相似文献   

15.
以小叶栀子(Gardenia jasminoides‘prostrata’) 、中华常春藤(Hedera nepalensis 〖WTBZ〗var.〖WTBX〗sinensis)、紫鸭跖草(Setcreasea purpurea)、红花酢浆草(Oxalis corymbosa)4种植物为研究对象,探讨了土壤盐碱地改良对绿地碳汇功能的影响。结果表明:碎石铺设、有机肥和粉碎秸秆3种土壤盐碱地改良方法中,有机肥的施入对土壤有机碳含量和植物生长的影响最大,该措施有利于土壤和植物碳储量的增加;不同土壤处理的有机碳矿化规律表现出很好的一致性,前期碳释放量大,后期释放量少,当埋入4 cm厚的碎石隔离层,施入20 kg/m2有机肥和2 kg/m2粉碎秸秆,其CO2总的释放量最多;总体而言,土壤盐碱改良处理仅施入粉碎秸秆1 kg/m2后,绿地碳汇能力最低,处于碳亏损状态,通过施入有机肥20 kg/m2和粉碎秸秆3 kg/m2的改良措施,其外源碳汇最大,整体绿地碳汇效益也最好。〖  相似文献   

16.
川中丘陵紫色土区农田土壤有机碳储量及空间分布特征   总被引:1,自引:0,他引:1  
土壤有机碳在陆地生态系统碳循环中起着举足轻重的作用。针对农田区域内典型县域尺度有机碳储量及其空间格局特征的研究,可以为区域农田土壤固碳提供参考,为研究我国土壤有机碳储量提供基础数据支持。基于2012年农田土壤有机碳分析调查数据,结合GIS和GPS技术对川中丘陵区盐亭县土壤有机碳密度和储量及空间格局进行了估算和分析。结果表明:其主要土壤类型的0~20 cm耕层土壤有机碳密度为111~426 kg/m2,平均值为266 kg/m2,水田和旱地耕层土壤有机碳密度分别为345和234 kg/m2,均低于全国平均值;全县20 cm深度土壤有机碳总储量250×109 kg C,紫色土类土壤有机碳储量最大,为153×109kg C,水稻土次之,有机碳储量0.93×109kg C,两者占据了农田土壤有机碳储量约98%,冲积土和黄壤土类由于面积小,有机碳储量也最低。各土壤类型有机碳储量丰度指数(RI)值都较低,碳存储能力处于中下水平。在县域农田尺度,有机碳空间格局与气候差异、植被类型关系不大,土壤类型空间差异和地形差异是有机碳空间格局形成的主要原因。  相似文献   

17.
洞庭湖退田还湖区不同土地利用方式对土壤养分库的影响   总被引:3,自引:0,他引:3  
以钱粮湖垸为例,研究了洞庭湖退田还湖区的林地(Ⅰ)、园地(Ⅱ)、旱地(Ⅲ)、水田(Ⅳ)和荒地(Ⅴ)等不同土地利用方式下的土壤养分含量、养分库综合指数以及养分相关性。研究表明:土壤养分分布的表聚效应明显,0~50 cm土层土壤有机质含量为3.40~32.32 g/kg,全氮、水解氮含量为2.23~9.71 g/kg、12.95~112.00 mg/kg,全磷、速效磷含量为29.50~69.35 g/kg、4.15~75.68 mg/kg,全钾、速效钾含量为603~3069 g/kg、37.70~217.50 mg/kg;林地土壤全氮含量最高,有机质含量最低,水田有机质、全钾及速效磷含量均最高,旱地水解氮含量最高,而荒地土壤全氮、全磷、全钾、水解氮及水解磷均最低;土壤养分库综合指数变化范围为24.33~295.93,排序为IⅣ(231.96)>IⅢ(193.46)>IⅡ(70.90)>IⅠ(59.57)>IⅤ(35.59);土壤养分要素的相关性分析结果表明,有机质与全磷、全磷与速效磷、全氮与全钾、水解氮与速效磷均呈显著正相关关系,相关系数分别为 0.5760、0.5961、0.6864 和 0.5701。  相似文献   

18.
长江中上游防护林体系森林植被碳贮量及固碳潜力估算   总被引:6,自引:0,他引:6  
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

19.
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

20.
对三峡库区典型林分林地土壤有机碳(SOC)含量特征及对土壤物理性质、土壤结构和土壤养分效应进行研究,以期为三峡库区生态环境建设提供依据。结果表明:SOC含量表现为表层(A层)土壤(12.06~45.18 g/kg)明显大于下层土壤,大一个数量级。从土壤表层到底层,SOC含量呈明显下降趋势。由相同立地条件的灌木林改造而来的农地土壤(改造年限8 a)各层土壤SOC含量都有所降低,土壤表层SOC含量降低了10%,土壤平均有机碳含量降到为灌木林地的66%。三峡库区SOC含量与土壤物理性质直接相关,SOC含量与土壤容重和土壤毛管孔隙度存在最为明显的线性关系〖WTBX〗(R2=0.83,0.83,n=19,p<0.01)。土壤有机碳直接参与了土团聚体的形成,SOC含量与土壤团聚度和土壤团聚状况均有较好的相关关系(R2=0.62,0.76,n=19,p<0.01)。各林地土壤中氮元素含量最高,速效氮含量约为速效磷的6倍,为速效钾的2.5倍。SOC与土壤主要营养元素(N,P,K)关系中,对N元素作用最明显,特别是速效氮〖WTBX〗(R2=0.66,n=19,p<0.01),对磷的矿化起主要作用,与钾元素关系不明显。土壤有机碳是决定N和P矿化的主导因子,从土壤表层到底层C/N比值呈下降趋势,C/P值约为C/N值的6倍。阳离子交换量(CEC)与土壤团聚度之间有明显的相关关系〖WTBX〗(R2=0.49,n=19,p<0.01〖WTBZ〗)。SOC对CEC的作用主要通过改变土壤结构而实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号