首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
大气颗粒物对环境和人体健康的影响不仅与颗粒物的总浓度有关,而且与其粒径大小分布有关,基此本文提出了一种兼顾其粒径大小的大气颗粒物环境质量评价方法。并以北京为例,在北京七个不同功能区用十级级联碰撞采样器进行采样,评价了大气颗粒物的环境污染。  相似文献   

2.
绵阳市代表性点位土壤多环芳烃剖面分布特征   总被引:2,自引:0,他引:2  
通过挑选绵阳市有代表性的点位土壤柱,应用GC MS分析土壤柱垂直剖面中多环芳烃的含量水平,得出其垂直剖面分布特征。结果表明:5~20 cm深度中的PAHs含量最高,40 cm以下则含量锐减。由于表层(0~5 cm)土壤与大气之间的土气交换频繁,PAHs含量相对较低,而5~20 cm处土壤受到表层土壤的遮盖,PAHs富集较高,含量达到整个土壤柱最高值。多环芳烃总体垂直剖面分布特征表现出随深度增加含量减少的趋势。PAHs总含量以江油市点位(33024 ng/g)最高,其次是三台县点位(29989 ng/g),最低是游仙区点位(11274 ng/g)。研究区主要污染物为Nap、Phe和Chr/y。其中不同的土质、种植物都能影响PAHs的富集和迁移速率,导致含量在不同深度上产生变化。此外,参照有关环境质量标准,发现PAHs总量上江油市点位与三台县点位属于轻微污染、游仙区点位则属于无污染。  相似文献   

3.
通过挑选绵阳市有代表性的点位土壤柱,应用GC MS分析土壤柱垂直剖面中多环芳烃的含量水平,得出其垂直剖面分布特征。结果表明:5~20 cm深度中的PAHs含量最高,40 cm以下则含量锐减。由于表层(0~5 cm)土壤与大气之间的土气交换频繁,PAHs含量相对较低,而5~20 cm处土壤受到表层土壤的遮盖,PAHs富集较高,含量达到整个土壤柱最高值。多环芳烃总体垂直剖面分布特征表现出随深度增加含量减少的趋势。PAHs总含量以江油市点位(33024 ng/g)最高,其次是三台县点位(29989 ng/g),最低是游仙区点位(11274 ng/g)。研究区主要污染物为Nap、Phe和Chr/y。其中不同的土质、种植物都能影响PAHs的富集和迁移速率,导致含量在不同深度上产生变化。此外,参照有关环境质量标准,发现PAHs总量上江油市点位与三台县点位属于轻微污染、游仙区点位则属于无污染。  相似文献   

4.
南京市植物叶面颗粒物的黑碳含量及时空分布特征   总被引:1,自引:0,他引:1  
黑碳是大气气溶胶的重要组成部分,能够吸收太阳辐射产生温室效应,并对人体健康产生负面影响。选取了南京市的6个典型功能区,研究不同污染水平和不同季节下植物叶面颗粒物黑碳含量的时空分布特征,并将其与地面尘和表层土壤中的黑碳含量进行比较,探讨黑碳在多介质中的分布规律。结果表明:(1)城市植物叶面颗粒物的黑碳含量呈现冬季秋季春季≈夏季的季节变化特征;(2)工业区植物叶面颗粒物的黑碳含量最高,并与其他功能区的差异达显著水平;(3)城市植物叶面颗粒物黑碳含量越高,BC/OC值也越大,城市植物叶面颗粒物的黑碳主要来源于化石燃料的燃烧;(4)黑碳气溶胶通过植被表层到达地表的过程中其含量逐渐下降,植物叶面颗粒物可作为监测大气黑碳污染的有效手段。  相似文献   

5.
昆明市街道灰尘粒度特征及其环境意义   总被引:4,自引:0,他引:4  
对昆明市2008年1、3、4、5、7和9月份6次采集的街道灰尘样品进行了粒度分析。结果表明:昆明市街道灰尘粒度主要呈三峰特征,第一众数为65~125 μm,第二众数为3~15 μm,第三众数为0.15~0.3 μm,平均粒径范围在39.91~255.85 μm,平均值为87.1 μm,旱季(90.6 μm)大于雨季(83.7 μm);粒度分布以正偏度为主,峰态为中等到偏窄且不对称,分选很差;与现代粉尘源区尘暴降尘的粒度分布模式高度相似,街道灰尘沉积是大气环流对远近不同距离粗细颗粒物的混合搬运的结果,应是风积作用的继续;灰尘细粒含量较高,≤100 μm的颗粒平均为635%,在适当的大气动力条件下,昆明市街道灰尘颗粒有60%~90%可以进入大气;灰尘主要来源于土壤风沙尘、建筑尘、工业烟尘和汽车尾气排放,灰尘中可吸入颗粒平均占25.2%,潜在危害性大。  相似文献   

6.
细颗粒物已经成为影响城市和区域空气质量的首要污染物。根据我国74个重点城市PM2.5年均浓度监测数据,分析了我国大气细颗粒物污染状况和区域分布特征。结合环境空气质量标准和"国十条"的要求,综合考虑不同区域空气污染特征、经济发展水平和环境管理需求的差异,提出了不同区域城市PM2.5年均浓度达标年限,并从管理机制、管理手段、达标途径等方面提出了我国城市PM2.5年均浓度达标策略。  相似文献   

7.
西南水汽通道上昆明站降水中的稳定同位素   总被引:15,自引:0,他引:15  
位于西南水汽通道上的昆明站降水中的稳定同位素比率具有显著的季节变化。旱季(11~4月)降水中平均δ18O明显高于雨季(5~10月)。显著的降水量效应说明昆明站降水的水汽主要来源于低纬度海洋。与全球大气水线相比,昆明站大气水线的斜率和常数项均较小。这与雨滴在未饱和大气中降落时重同位素的蒸发富集作用有关。统计分析显示,近地面温度露点差ΔTd与降水中稳定同位素比率存在显著的正相关关系。在旱季,受大陆性气团的影响,空气干燥,降水量小,大气中ΔTd大,因此蒸发强,重同位素的富集作用强,从而降水中稳定同位素比率高;在雨季,受来自海洋水汽的影响,空气湿润,降水量大,大气中ΔTd小,因此蒸发弱,重同位素的富集作用轻,从而降水中稳定同位素比率低。据此推测,降水量效应可能是不同水汽来源对降水中稳定同位素影响的产物。  相似文献   

8.
为揭示三峡水库干流消落带的泥沙沉积规律、分析沉积泥沙来源,本研究采用原位观测方法采集沉积泥沙样品,利用激光粒度仪测试泥沙粒径,分析沉积泥沙粒径在水平、垂直和高程3个维度上的变化特征,并与三峡水库入库泥沙的粒径特征相结合,阐述消落带沉积泥沙来源。结果表明:(1)三峡水库干流消落带沉积泥沙粒径在水平方向上存在比较强烈的空间变化,中值粒径沿河流流向方向呈逐渐下降趋势,并在忠县及其下游河段基本保持稳定;(2)泥沙粒径随高程的变化存在较大的空间差异,河流挟沙是消落带下部粗颗粒泥沙的主要来源,而消落带上方的土壤侵蚀强度越高,消落带顶部的沉积颗粒就越容易变粗;(3)在水库尾端,泥沙剖面存在较明显的旋迴分层现象,其中值粒径数值较大、变化幅度较宽,越往下游推进,中值粒径的数值越低、变化幅度越小,泥沙旋迴分层现象逐渐消失;(4)水库尾端的沉积泥沙以库区外来沙为主,越往下游推进,库区内产沙对粗颗粒泥沙的贡献逐渐升高,但库区内外来沙都能够为沉积泥沙提供丰富的细颗粒物源,因此,细沙的来源具有一定的复杂性和多样化特征。  相似文献   

9.
长江经济带PM_(2.5)时空特征及影响因素研究   总被引:1,自引:0,他引:1  
大气细颗粒物(PM_(2.5))因其对空气环境质量乃至人类健康的巨大危害而逐渐引起学者们的关注。本文以我国综合实力最强、战略支撑作用最为突出的区域之一——长江经济带为研究对象,基于城市级空气质量监测数据,运用地理学时空分析与GIS可视化方法探索并呈现了2015年长江经济带PM_(2.5)的时空分布特征及其演变规律;在此基础上,结合空间回归模型考察了PM_(2.5)浓度与区域城市发展之间的内在关系。结果表明,就空间特征而言,长江中下游地区PM_(2.5)污染较长江上游地区更为严重,长江北岸地区比长江南岸地区更为严重;PM_(2.5)高浓度集聚地带主要位于鄂皖苏大部分地区,与空气质量较佳的云南及其周边地区呈"对角"分布状态。长江经济带内城市间PM_(2.5)浓度存在着显著的正向空间自相关,且自相关性随距离增大而不断减弱,其门槛尺度约为900 km;在这一范围内,PM_(2.5)空间集聚效应较为明显。就时间特征而言,冬季PM_(2.5)浓度相对较高,春秋两季次之,夏季空气质量最好;各地区浓度分布在年初相对离散,后有所趋同。此外,PM_(2.5)与其他类型的大气污染物(如SO2、NO2、O3)浓度两两之间均存在着显著的正相关性,暗示大气污染物从原发污染演变为二次污染,形成恶性循环。空间回归分析结果表明,PM_(2.5)污染随经济发展水平的提高呈现先上升后下降的趋势,在一定程度上支持了"环境库兹涅兹曲线"假说;且人口密度、公共交通运输强度均在不同程度上导致长江经济带PM_(2.5)浓度的升高。最后,从区域性联防联控、不同类型大气污染物协同治理、促进经济发展方式转型等方面为长江经济带的大气环境治理提出切实可行的政策建议。  相似文献   

10.
利用加湿串联差分迁移分析仪H-TDMA,观测研究了2012年9~10月黄山不同高度40~200 nm大气气溶胶粒子的吸湿增长因子GF(Growth Factor)。结果表明:当粒子到达潮解点之后,颗粒物的GF多为双峰分布,分为GF1.15的弱吸湿组和GF1.15的强吸湿组;相同粒径下,强吸湿组离散程度大于弱吸湿组。相对湿度的变化对粒子吸湿增长的影响与粒子大小及化学组分有关,爱根核模态和积聚模态粒子在相同的相对湿度下潮解点不同,硝酸铵和硫酸铵是颗粒物中主要的吸湿成分。气溶胶粒子的吸湿性有明显的日变化。黄山地区环境相对较清洁,实验设置的相对湿度85%较其他地方低,也是气溶胶粒子整体吸湿性小于城市地区的原因之一。对比不同海拔高度下气溶胶粒子的吸湿性,发现随海拔高度的增加,气溶胶的吸湿性减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号