首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radon ((222)Rn) concentration was measured at indoor workplaces in Japan to estimate effective dose to the public from (222)Rn and its progeny. Measurements were made from 2000 to 2003 at 705 sites in four categories of office, factory, school and hospital. Passive type Rn monitors equipped with two sheets of polycarbonate thin films for measuring radon concentrations were installed at observation sites and replaced every 3 months to observe seasonal variations in (222)Rn concentrations. The range of annual mean (222)Rn concentrations for all sites was 1.4-182 Bq m(-3), with the arithmetic mean and standard deviation were 20.8 and 19.5 Bq m(-3). Annual mean (222)Rn concentration observed at office, factory, school and hospital were 22.6, 10.1, 28.4 and 19.8 Bq m(-3), respectively. Seasonal variations in (222)Rn concentrations at offices, schools and hospitals were similar to those found in dwellings, and variations in factories were similar to those found in outdoor environments. (222)Rn concentration observed in every quarter period was found to decrease as follows: school>office>hospital>factory. The average effective dose to the public due to (222)Rn was estimated to be 0.41 mSv y(-1) weighted by the working population. Considering the (222)Rn exposure in indoor workplaces, effective dose to the general public is estimated to be in the range from approximately 0.42 to 0.52 mSv y(-1).  相似文献   

2.
Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).  相似文献   

3.
Considering the role of radon in epidemiology, an attempt was made to make a nation-wide map of indoor 222Rn and 220Rn for India. More than 5000 measurements have been carried out in 1500 dwellings across the country comprising urban and nonurban locations. The solid state nuclear track detectors based twin cup 222Rn/220Rn discrimination dosimeters were deployed for the measurement of indoor 222Rn, 220Rn and their progeny levels. The geometric means of estimated annual inhalation dose rate due to indoor 222Rn, 220Rn and their progeny in the dwellings was 0.94 mSvy−1 (geometric standard deviation 2.5). It was observed that the major contribution to the indoor inhalation dose was due to indoor 222Rn and its progeny. However, the contribution due to indoor 220Rn and its progeny was not trivial as it was found to be about 20% of the total indoor inhalation dose rates. The indoor 222Rn levels in dwellings was significantly different depending on the nature of walls and floorings.  相似文献   

4.
Radon and gamma radiation level measurements were carried out inside the La Carolina mine, one of the oldest gold mining camps of southern South America, which is open for touristic visits nowadays. CR-39 track-etch detectors and thermoluminescent dosimeters of natural CaF2 and LiF TLD-100 were exposed at 14 points along the mine tunnels in order to estimate the mean 222Rn concentration and the ambient dose equivalent during the summer season (November 2008 to February 2009). The values for the 222Rn concentration at each monitoring site ranged from 1.8 ± 0.1 kBq m−3 to 6.0 ± 0.5 kBq m−3, with a mean value of 4.8 kBq m−3, indicating that these measurements exceed in about three times the upper action level recommended by ICRP for workplaces. The correlations between radon and gamma radiation levels inside the mine were also investigated. Effective doses due to 222Rn and gamma rays inside the mine were determined, resulting in negligible values to tourists. Considering the effective dose to the mine tourist guides, values exceeding 20 mSv of internal contribution to the effective doses can be reached, depending on the number of working hours inside the mine.  相似文献   

5.
In the framework of a 222Rn screening campaign that was carried out in 58 public secondary schools in Galicia (NW Spain), the largest radon-prone area in the Iberian Peninsula, a positive correlation between indoor 222Rn concentration and outdoor gamma exposure rate was obtained. A new approach to the data acquisition in screening surveys was tested, improving the performances of this type of study and gathering useful data for future remedial actions. Using short-period detectors (charcoal canisters) firstly, in order to detect places showing 222Rn concentrations over 400 Bq m−3, the number of locations to be measured with long-period detectors (etched track detectors) is reduced. In this screening campaign, 34% of the schools surveyed presented at least one site exceeding the 400 Bq m−3 recommended action level established by the EU, and 15% had at least one site with 222Rn values over 800 Bq m−3. The maximum value recorded was 2084 ± 63 Bq m−3. These results are discussed and compared with data obtained in schools of several countries with similar geology. Seven schools were also studied for seasonal variations of 222Rn activity concentration. The results were not conclusive, and no significant correlation between season and 222Rn concentration was established. Finally, a continuous 222Rn concentration monitor was placed in the secondary school exhibiting a mean value of the 222Rn concentration very close to 400 Bq m−3. Maximum 222Rn concentration values were found to occur at times when the school was unoccupied.  相似文献   

6.
Indoor and soil gas Radon (222Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor 222Rn gas concentration values. In the second stage, soil gas 222Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although 222Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas 222Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.  相似文献   

7.
The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.  相似文献   

8.
Using high-sensitivity radon ((222)Rn) portable detectors (passive electronic devices of the type RADIM3), the airborne (222)Rn concentration in the interior of various Cypriot buildings and dwellings was measured. For each preselected building and dwelling, a calibrated detector was put into a closed room, and the (222)Rn concentration was registered in sampling intervals of 2 to 4 h for a total counting time of typically 48 h. (222)Rn activity concentrations were found to be in the range of 6.2 to 102.8 Bq m(-3), with an overall arithmetic mean value of (19.3+/-14.7) Bq m(-3). This value is by a factor of two below the world average (population-weighted) value of 39 Bq m(-3). The total annual effective dose equivalent to the Cypriot population was calculated to be between 0.16 and 2.6 mSv with an overall arithmetic mean value of (0.49+/-0.37) mSv.  相似文献   

9.
An extensive research project to investigate the radioactive properties of Cuban building materials was carried out because there is a lack of information on the radioactivity of such materials in Cuba. In the framework of this project 44 samples of commonly used raw materials and building products were collected in five Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values were in the ranges: 9-857Bqkg(-1) for (40)K; 6-57Bqkg(-1) for (226)Ra; and 1.2-22Bqkg(-1) for (232)Th. The radium equivalent activity in the 44 samples varied from 4Bqkg(-1) (wood) to 272Bqkg(-1) (brick). A high pressure ionisation chamber was used to measure the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43nGyh(-1) (Holguín) to 73nGyh(-1) (Camagüey) and the corresponding population-weighted annual effective dose due to external gamma radiation was estimated to be 145+/-40microSv. This value is 51% lower than the effective dose due to internal exposure from inhalation of decay products of (222)Rn and (220)Rn and it is 16% higher than the calculated value for the typical room geometry of a Cuban house.  相似文献   

10.
Galician soils are among those with the highest (222)Rn exhalation rates in Spain. A year-round study of the indoor (222)Rn concentration in buildings in the Santiago de Compostela area (Galicia, Northwest of Spain) was performed. The study is based on systematic samplings with active charcoal canisters, following a modified EPA 520/5-87-005 protocol. These measurements were complemented by others obtained using etched track dosimeters. Each data set follows a log-normal distribution, with a geometric mean of (253+/-3)Bqm(-3) for charcoal canisters and (285+/-2.5)Bqm(-3) for etched track detectors. After correcting for the different measuring conditions, the mean value of both methods differed by only 2%. A careful analysis of the seasonal dependence of our measurements did not reveal any significant seasonal variations in the (222)Rn concentration. Parallel to these measurements, different meteorological parameters were recorded, which revealed a direct correlation between the indoor radon concentration and the outdoor temperature derivative with respect to time.  相似文献   

11.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The (222)Rn activity concentrations ranged from 0.24 to 1168BqL(-1). The statistical analysis showed a log-normal distribution with a mean of (111+/-7)BqL(-1) and a median of (36+/-3)BqL(-1). A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of (222)Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed (222)Rn activity concentrations above the Euratom recommended limit of 100BqL(-1). Three uranium series radionuclides ((238)U, (234)U, and (226)Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

12.
Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.  相似文献   

13.
The present study investigates the short- and long-term effects of radon ((222)Rn) released from water on the progeny exposure in a thermal spa. For the purposes of this work, the Polichnitos spa was used as a case study. The bathroom was supplied with water containing 110-210 kBq m(-3) of (222)Rn. The (222)Rn concentration in air and the short-lived (222)Rn progenies in attached and unattached form were monitored into the bathroom and the surrounding premises. The equilibrium factor (F-factor) and the unattached fraction were estimated. The results of this study show that water flow during bath filling is by far the dominant mechanism by which (222)Rn is released in the air of the bathroom. The progeny exposure was correlated linearly with the (222)Rn concentration in the entering water. The annual effective dose received by a worker was found to be below the lower limit value of 3 mSv recommended by ICRP 65. The dose limit was exceeded only for water containing more than 300 kBq m(-3).  相似文献   

14.
In solar rockbed storage systems, heat is transferred during the day from the collector to a bed of pebbles, and released at night to warm the living space. When the rocks used for storage contain significant concentrations of uranium, 222Rn and its daughters may be released to the living area. A microcomputer model was used to simulate variations in air filtration rate and source strength through several days of operation. Source strengths were estimated from theoretical considerations and literature data. Resulting 222Rn and daughter concentrations were computed by solving system equations by fourth-order Runge-Kutta integration. During the day, when the living space is isolated from the radon source, interior 222Rn concentrations approach those of the outdoors. A nighttime steady-state concentration is approached about 6 h after heat discharge begins. Due to the dynamic nature of the simulation, equilibrium between 222Rn and its daughters is not reached. Time-weighted average nighttime exposures (6 p.m.–8 a.m.) for 10 simulation runs varied from 0.001 to 0.018 working level (WL). Comparison with one set of measurement data showed the model to overpredict concentrations but to approximate the 222Rn buildup rate well. Combinations of source strength, infiltration rate, and exterior radon concentration which would lead to exposures exceeding 0.02 WL were calculated.  相似文献   

15.
Results of indoor gamma radiation and radon measurements in 95 wooden dwellings located in a Norwegian thorium-rich carbonatite area using thermoluminescent dosemeters and CR-39 alpha track detectors, respectively, are reported together with a thorough analysis of the indoor data with regard to geological factors. Slightly enhanced radium levels and thorium concentrations of several thousands Bq kg(-1) in the carbonatites were found to cause elevated indoor radon-222 levels and the highest indoor gamma dose rates ever reported from wooden houses in Norway. An arithmetic mean indoor gamma dose rate of 200 nGy h(-1) and a maximum of 620 nGy h(-1) were obtained for the group of dwellings located directly on the most thorium-rich bedrock.  相似文献   

16.
The purpose of this study was to investigate radon in the vicinity of geologic fault zones within the Krakow region of Poland, and to determine the influence of such formations on enhanced radon concentrations in soil. Radon ((222)Rn and (220)Rn) concentration measurements in soil gas (using ionization chamber AlphaGUARD PQ2000 PRO and diffusion chambers with CR-39 detectors), as well as radioactive natural isotopes of radium, thorium and potassium in soil samples (using gamma ray spectrometry with NaI(Tl) and HPGe detectors), were performed. Site selection was based on a geological map of Krakow. Geophysical methods (ground penetrating radar and shallow acoustic seismic) were applied to recognize the geological structure of the area and to locate the predicted courses of faults. Elevated levels of radon and thoron in soil gas were found in the study area when compared with those observed in an earlier survey covering Krakow agglomeration. For (222)Rn, the arithmetic mean of registered concentration values was 39 kBq/m(3) (median: 35.5 kBq/m(3)). For (220)Rn, the arithmetic mean was 10.8 kBq/m(3) and median 11.8 kBq/m(3).  相似文献   

17.
Radon (Rn(222)) levels in an indoor atmosphere of a multi-storey building at Mumbai have been measured for one year covering all the four seasons. Monitoring was carried out using the time-integrated passive detector technique, using Kodak-115 type Solid State Nuclear Track Detector (SSNTD) films of 2.5x2.5 cm size. Measured indoor radon levels showed a decreasing trend with height with concentration ranging from 41 Bq m(-3) at ground floor level to 15 Bq m(-3) at 19th floor level. Using the dose conversion factors, the inhalation dose due to breathing of radon gas is estimated to be 1.03 mSv y(-1) at the ground floor to 0.38 mSv y(-1) at the 19th floor level. Measured indoor radon concentrations on each floor were compared with the computed values using a mathematical model. The agreement between measured values and calculated values of indoor concentrations at different floors was very good within the limitations of various field parameter values.  相似文献   

18.
Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).  相似文献   

19.
Radon-222 in Brazil: an outline of indoor and outdoor measurements   总被引:3,自引:0,他引:3  
This study discusses the methodology for measuring and assessing the radon concentration in indoor and outdoor environments. A research study was developed to investigate the long-term behavior of the diurnal and seasonal fluctuations of radon (222)Rn EEC (Equilibrium-Equivalent Concentration) and the influence of temperature and other climatic aspects on this behavior. The study was performed by means of both integrated and instantaneous measurements of radon and its short-lived daughter products for a period of 1 year in an indoor environment in Rio de Janeiro city, Brazil (reference environment), with continuous measurement, using a radon monitor with an alpha spectrometry detector.For a single day, a variability of about 50% could be observed in the (222)Rn EEC values measured on a hourly basis, with a maximum occurring early in the morning and a minimum in the afternoon. For the long-term period, seasonality is responsible for a two order of magnitude variability, with a maximum of 50 Bq.m(-3) in winter (dry season) and a minimum of 0.5 Bq.m(-3) in the summer months (wet season), outdoors. A negative correlation with temperature was observed. The conclusions of this experiment led to a survey of radon gas concentration in dwellings in Rio de Janeiro city, Brazil, in urban area with nearly 7 million inhabitants, through integrated sampling methods, using a Solid State Nuclear Track Detectors Technique (SSNTD). The study was conducted in different geomorphological locations in town. The radon gas concentration in Rio de Janeiro dwellings ranged from 5 Bq.m(-3) to 200 Bq.m(-3). A good correlation between indoor radon gas concentration and location of dwellings was observed. The seashore areas presented the lowest levels of indoor radon concentration, whereas the highest levels were found close to the mountains.  相似文献   

20.
A theoretical approach to indoor radon and thoron distribution   总被引:1,自引:0,他引:1  
A model based on the Finite Element Method was developed to simulate indoor behavior of radon ((222)Rn), thoron ((220)Rn) and their progeny, as well as, to calculate their spatial distributions. Since complex physical processes govern the distribution several simplifications were made in the presented model. Different locations of possible radon/thoron sources, diffusion of these gases, their radioactive decay, etc were taken into account. Influences of different parameters on thoron/radon as well as indoor distribution of their progeny, such as the geometry and room dimension, the presence of aerosols and their size distribution expressed through the diffusion coefficient, different kinds of ventilation, etc, were investigated. It has been found that radon is distributed homogeneously, while the thoron concentration is rather inhomogeneous and decreases exponentially with the distance from the source. Regardless of the source distribution, the distribution of radon was homogeneous, except at places near an air inlet and outlet. However, the distribution of thoron depends on the source distribution. If thoron emanates from walls or the floor, its concentration decreases with the distance from the wall. Moreover, the concentration gradient is much larger near walls. This suggests that the actual selection of the site effect should be taken into account when obtaining a representative value of indoor (220)Rn and their progeny for dose assessment. The simulation results of activities and their distribution were in accordance with the results of other studies and experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号