首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Abstract

Spectral feature of forest vegetation with remote sensing techniques is the research topic all over the world, because forest plays an important role in human beings' living environment. Research on vegetation classification with vegetation index is still very little recently. This paper proposes a method of identifying forest types based on vegetation indices, because the contrast of absorbing red waveband with reflecting near-infrared waveband strongly for different vegetation types is recognized as the theoretic basis of vegetation analysis with remote sensing. Vegetation index is highly related to leaf area index, absorbed photosynthetically active radiation and vegetation cover. Vegetation index reflects photosynthesis intensity of plants and manifests different forest types. According to reflectance data of forest canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun of China, many vegetation indices are calculated and analyzed. The result shows that the relationships between vegetation indices and forest types are that perpendicular vegetation index (PVI) identifies broadleaf forest and coniferous forest the most easily; the next is transformed soil-adjusted vegetation index (TSVI) and modified soil-adjusted vegetation index (MSVI), but their calculation is complex. Ratio vegetation index (RVI) values of different coniferous forest vary obviously, so RVI can classify conifers. Therefore, the combination of PVI and RVI is evaluated to classify different vegetation types.  相似文献   

2.
基于PCA变换和神经元网络分类方法的中国森林制图研究   总被引:4,自引:0,他引:4  
主要讨论基于NOAA AVHRR数据生成的NDVI时间序列数据与其他来源的地理数据结合进行中国森林细分类和制图的研究。首先利用ISODATA聚类方法对由NDVI时间序列数据派生的NDVI矩阵变量因子进行土地覆盖类型的分类,然后利用已有的植被类型图、TM影像以及地面样点数据作为参考依据, 进行类合并,获得中国森林边界。然后用PCA方法对NDVI时间序列数据进行信息增强与压缩处理,以排除各种干扰因素,提高分类精度。最后结合部分地理数据和地面样点调查数据,利用神经元网络方法进行中国森林分类,并依据种属和物候学特征、中国气候区划图以及国家植被分类二、三级分类系统,进行重新归类,得到最后的1 km中国森林分类图。分类结果表明,所用方法能够更加细致地划分森林类型,并且能保留一个相对较高的分类精度。  相似文献   

3.
Identification of Forest Vegetation Using Vegetation Indices   总被引:1,自引:0,他引:1  
Spectral feature of forest vegetation with remote sensing techniques is the research topic all over the world, because forest plays an important role in human beings' living environment. Research on vegetation classification with vegetation index is still very little recently. This paper proposes a method of identifying forest types based on vegetation indices, because the contrast of absorbing red waveband with reflecting near-infrared waveband strongly for different vegetation types is recognized as the theoretic basis of vegetation analysis with remote sensing. Vegetation index is highly related to leaf area index, absorbed photosynthetically active radiation and vegetation cover. Vegetation index reflects photosynthesis intensity of plants and manifests different forest types. According to reflectance data of forest canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun of China, many vegetation indices are calculated and analyzed. The result shows that the relationships between veg  相似文献   

4.
Forest vegetation of a community managed forest (Van Panchayat) located between 1570–1700 m elevation was studied along four aspects. Quercus leucotrichophora was the dominant species on three of the four aspects. Across the aspects the total tree density ranged between 150 and 490 ind/ha, sapling density between 100 and 370 ind/ha, seedling density varied from 241 to 1090 ind/ha. The shrub density ranged from 166 to 690 ind/ha and herb density from 6000–17100 ind/ha. The total basal area of tree layer varied from 9.78 to 13.5 m2/ha showing that the forest is young. Species diversity value for tree layer varied from 0.14 to 1.69. Quercus leucotrichophora were regenerating well due to effective forest management by local communities. The higher proportion of seedlings of Quercus leucotrichophora indicating that the Van Panchayat are playing important role in conservation of oak forest of Himalaya.  相似文献   

5.
为了揭示森林植被水文效应的动态变化过程,将简化的简单生物圈模型与动态植被模型和流域地形指数水文模型相耦合进行长江上游梭磨河流域植被及其水文效应的动态模拟。结果表明:植被覆盖和叶面积指数的增加使植被蒸腾和冠层截留蒸发增加而使土壤蒸发减小,植被的水文效应取决于蒸发分量中这两个相反方向变化的净效应。流域主要由草地和灌木覆盖时流域总蒸发大于裸地和林地。与裸地相比较,当单位叶面积指数截留能力取值0.1 mm时,森林减小了流域总蒸发,但当单位叶面积指数截留能力取值0.2 mm时,森林增加了流域总蒸发。森林的水文效应对冠层截留能力敏感,冠层截留能力存在一个控制森林水文效应从减小总蒸发变为增加总蒸发的转折点。植被的水文效应是随时间变化的,对于给定的植被类型其叶面积指数是决定其水文效应的关键因子。  相似文献   

6.
Forestry is a productive sector with significant effects on meeting national socio-economic and environmental functions as well as the improvement of rural livelihoods. Non-wood forest products (NWFPs) in particular have been widely advocated by conservation and development organisations as potential alternative livelihood strategies, particularly among vulnerable forest dependant households. Like in most tropical countries, NWFPs are relevant in the sustainable development of Kenya that is particularly endowed with important forest resources. Kenya hosts about 17 million ha of forested land (about 3.51% of the total Sub-Saharan Africa forest cover by 2000), of which about 16,865,000 ha is under natural forest (EarthTrends: Forests, grasslands and drylands, 2003). Outside the gazetted forests, there are other large tracks of forests in trust lands, including national parks and reserves, hill forest reserves and privately owned lands covering about 0.5 million ha (Kenya’s forest resource assessment in the EC-FAO Partnership Programme Report, 2000; The Kenya Forests Act, 2005). Woodlands, bushlands and wooded grasslands, mainly found in the arid and semi-arid lands cover 37.6 million ha, while forest plantations (started in 1946) cover about 170,000 ha of land (The Kenya forestry master plan, 1994–2020, 1994). In most NWFPs endowed regions of the country however, this socio-economic and environmental potential is still unrealized. We illustrate the latter by a case study of NWFPs use and management in four villages in Mbooni Division of Makueni District, Kenya. The division was chosen because of its relatively high NWFPs availability, particularly from South Mbooni forest that is located at a distance less than 5 km for an estimated 80% of the interviewed households. Data used for the analysis was collected through a fieldwork survey carried out on women (35+ years) in August, 2005. One hundred and sixty (160) NWFPs are harvested (from plant and animal species) and used mainly for food, income generation (supplemental) and medicinal purposes. A number of challenges limit women’s enjoyment of the full benefits from NWFPs exploitation, the overriding problem being their inadequacy (in quantity and/or quality). In this paper we discuss these commonly utilized and managed NWFPs plant species in Mbooni and their potential contribution to improved livelihoods and sustainable development in Mbooni, Kenya and Sub-Saharan Africa (SSA) in general.  相似文献   

7.
In the mountainous regions of northern Laos, shifting cultivation, or slash-and-burn agriculture, is widely practiced. However, the crop–fallow rotation cycle is becoming shorter owing to forest conservation policies and population pressure, causing loss of productivity that deleteriously affects farmers’ livelihoods in the region. To investigate regional land use conditions, we have developed a method of identifying the crop–fallow rotation cycle from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper+ (ETM+) data. We assessed the impact of the identified cycle on plant production measured by Normalized Difference Vegetation Index (NDVI). The study site was an area in Luang Prabang Province. Using eight TM and ETM+ images acquired annually from 1995 to 2003, except for 1998, when cloud-free data were not collected, we classified land use in each year as crop or fallow by the presence of vegetation in the late dry season. Conformity with fallow age determined by field investigation was 69.1%. The cultivation frequency from 1995 to 2002 showed that 77,000 ha (17.3% of the study site) had not been used for cropping during the period, but 41,000 ha (9.2%) had been used every year. Of the study site, 129,000 ha (29.1%) was cultivated one or two times, 83,000 ha (18.7%) was three or four times, and 54,000 ha (12.2%) was five or six times. The NDVI of crops in November did not provide sufficient evidence to prove the assumption that a longer fallow period would result in better crop yields. Instead, the regeneration of fallow vegetation was evidenced by the higher NDVI values after longer fallow. More than 8 years would be needed to reach the same NDVI as forest. From the produced maps indicating fallow age and cultivation frequency, we found that areas with high potential for regeneration decreased as cultivation frequency increased. Areas near rivers were intensively used, and fallow length was accordingly short. Low-potential areas were found in the western basin of the Mekong River. This spatial information can be used to detect areas where biomass productivity is at high risk of deteriorating. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

8.
A sensitivity study was performed to investigate the responses of potential natural vegetation distribution in China to the separate and combined effects of temperature, precipitation and [CO2], using the process-based equilibrium terrestrial biosphere model BIOME4. The model shows a generally good agreement with a map of the potential natural vegetation distribution based on a numerical comparison using the ΔV statistic (ΔV = 0.25). Mean temperature of each month was increased uniformly by 0–5 K, in 0.5- or 1-K intervals. Mean precipitation of each month was increased and decreased uniformly by 0–30%, in 10% intervals. The analyses were run at fixed CO2 concentrations of 360 and 720 ppm. Temperature increases shifted most forest boundaries northward and westward, expanded the distribution of xeric biomes, and confined the tundra to progressively higher elevations. Precipitation increases led to a greater area occupied by mesic biomes at the expense of xeric biomes. Most vegetation types in the temperate regions, and on the Tibetan Plateau, expanded westward into the dry continental interior with increasing precipitation. Precipitation decreases had opposite effects. The modelled effect of CO2 doubling was to partially compensate for the negative effect of drought on the mesic biomes and to increase potential ecosystem carbon storage by about 40%. Warming tended to counteract this effect, by reducing soil carbon storage. Forest biomes showed substantial resilience to climate change, especially when the effects of increasing [CO2] were taken into account. Savannas, dry woodland and tundra biomes proved sensitive to temperature increases. The transition region of grassland and forest, and the Tibetan plateau, was the most vulnerable region.  相似文献   

9.
The types, frequency, and intensity of human interference with forests markedly affect the vegetation dynamics. Assessment of the impact of anthropogenic disturbances on forest diversity and structure is one of the central issues related to human behaviour and forest ecosystems and management. Both species diversity and density are very sensitive to local anthropogenic disturbance, which can be reduced depending on land-use systems. We used 10 line transects of 500 × 10 m to record and measure all plants ≥10 cm girth in some of the remaining forests surrounding villages in Tripura, Northeast India. To predict the effects of anthropogenic pressure on species richness and forest structure, we recorded and scored all ongoing disturbances in all transects of the forests. Although our study did not show any significant effects on the mean number of species, all diversity indices were significantly affected by disturbance. Total stem density (F = 128.60, p < 0.0001) and basal area (F = 65.30, p < 0.0001) of the forest stands were significantly affected by disturbance. Disturbance significantly (F = 84.81, p < 0.0001) impacts the abundance of mature voluminous trees removed by extensive illegal logging. Further, stem density at the middle (F = 10.01, p < 0.05) and upper (F = 131.70, p < 0.0001) canopy stories was also reduced by high disturbance intensity. The present analysis will be useful to policy-makers and planners for implementation of sustainable forest management at both the local and regional scale.  相似文献   

10.
Many traditional models of vegetation canopy reflectance have commonly used one of two approaches. Either the canopy is assumed to consist of discrete objects of known reflectance and geometric-optics are then used to calculate shading effects, or, as in the turbid medium approach, the canopy is treated as a horizontally homogeneous layer of small elements of known optical properties and radiative transfer theory is used to calculate canopy reflectance. This paper examines the effect of solar zenith angle on the reflectance of red and near-infrared radiation from forests using a combination of these modelling approaches. Forests are first modelled as randomly spaced eucalypt crowns over a homogeneous understorey and the fractional coverage of four components: shaded and sunlit canopy and shaded and sunlit understorey are calculated. Reflectance from each fraction is then modelled for a range of solar zenith angles using the Verhoef SAIL model. The overall scene reflection as seen by a nadir viewing satellite sensor is compared for three forest types representing a gradient of crown density from open dry grassy woodlands to dense wetter closed forest with an understorey of mesophytic plants. Modelled trends in scene reflectance change are consistent with aircraft measurements carried out at three different solar zenith angles. Results indicate that an increase in both tree density and solar zenith angle leads to an increase in the dominance of shaded components. In the visible band, both the sparsely treed woodland and the medium density dry forest show similar trends to that predicted by a turbid medium model, however, the wet forest shows a less rapid decrease in reflectance with solar zenith angle. In the near-infrared band, as tree density increases from woodland to wet forest, overall scene reflectance shows increased departure from that modelled using the traditional assumption of smooth homogeneous canopies, changing from an increase with solar zenith angle for the woodland to a decrease with solar zenith angle for the forest types.  相似文献   

11.
Land-cover change is the result of complex multi-scale interactions between socioeconomic, demographic, and environmental factors. Demographic change, in particular, is thought to be a major driver of forest change. Most studies have evaluated these interactions at the regional or the national level, but few studies have evaluated these dynamics across multiple spatial scales within a country. In this study, we evaluated the effect of demographic, environmental, and socioeconomic variables on land-cover change between 2001 and 2010 for all Mexican municipalities (n?=?2,443) as well as by biome (n?=?4). We used a land-cover classification based on 250-m MODIS data to examine the change in cover classes (i.e., woody, mixed woody, and agriculture/herbaceous vegetation). We evaluated the trends of land-cover change and identified the major factors correlated with woody vegetation change in Mexico. At the national scale, the variation in woody vegetation was best explained by environmental variables, particularly precipitation; municipalities where woody cover increased tended to be in areas with low average annual precipitation (i.e., desert and dry forest biomes). Demographic variables did not contribute much to the model at the national scale. Elevation, temperature, and population density explained the change in woody cover when municipalities were grouped by biome (i.e., moist forest, dry forest, coniferous forest, and deserts). Land-cover change at the biome level showed two main trends: (1) the tropical moist biome lost woody vegetation to agriculture and herbaceous vegetation, and (2) the desert biome increased in woody vegetation within more open-canopy shrublands.  相似文献   

12.

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

  相似文献   

13.
Understanding changes in forest composition and structure is important to help formulate effective policies that promote future ability of forests to provide local livelihood needs, habitat and ecosystem services. This is particularly important in dry tropical forests that are ecologically different from other forests and are heavily used by local, forest-dependent residents. In this study, we identify biophysical, demographic and use factors associated with differences in species diversity, vegetation structure (abundance at different size classes), biomass and relative abundance of species across the Kanha–Pench landscape in Central India. We sampled vegetation in twenty transects across different human and livestock population densities and frequencies of use. We found that biomass, species diversity and vegetation (abundance at different size classes) are negatively associated with increasing population density, and species composition at different size classes is significantly different at higher frequencies of use at low population densities. Lack of difference in species composition at high population densities may be due to colonization and growth of individuals at some of these sites due to creation of new ecological niches and gaps at high human use. Relative abundance of species at different size classes also varies with frequency of use and population density. Results suggest that human use is altering relative abundance of species, which may change long-term forest composition and thus alter biomass and vegetation structure of the forest. We conclude that human use is an agent in altering long-term composition that can alter availability of tree species for local use and other ecosystem services.  相似文献   

14.
精准的土地利用信息是土地资源监测和管理的基础。为提高低山丘陵区域的土地利用分类精度,选取重庆市江津区李市镇为研究案例,基于随机森林方法,以Sentinel-2影像数据和地形因子为数据源,提取3种变量(传统遥感数据,红边遥感数据和地形因子),合计23个特征指标,构建3个具有不同输入变量的组合模型,以提取研究区土地利用信息,分析变量的重要性。结果表明:(1)传统遥感数据模型中顺序添加红边遥感数据和地形因子,总体分类精度分别为86.54%,87.19%,88.61%;Kappa系数分别为 0.800 9,0.810 2,0.831 4;(2)对模型精度有重要影响的特征指标依次是波段B2(Blue),B4(Red),B3(Green),改进归一化差异水体指数(MNDWI)和波段B5(Vegetation Red Edge 1);(3)基于随机森林的遥感数据和地形因子的组合方法,是获取研究区高精度土地利用信息的一种有效手段。研究成果可以为地形复杂区域的土地利用分类提供参考。  相似文献   

15.
Classification and distribution of mangrove vegetation are vital information for the proper development of a mangrove management plan. In this study, classification for the mangroves of the district of Kemaman were done using both 1 : 5000 aerial photographs and Landsat TM imageries. The coverage by aerial photographs is limited to the coastal and estuarine areas only. Thus, for areas further upstream of the aerial photo coverage, Landsat TM imageries were used. Analysis of aerial photographs and remote sensing images revealed that the mangroves of Kemaman could be classified into 14 different classes of vegetation. All the 14 classes were identified from areas covered by the aerial photographs. For areas covered by the Landsat images only 7 classes of vegetation were identified. The accuracy for aerial photograph and Landsat images are 91.2% and 87.8%, respectively. It can be concluded that although both techniques are useful in determining the mangrove vegetation classes, the large 1 : 5000 aerial photographs are more accurate and provided more detailed information comparatively.  相似文献   

16.
Pinus roxburghii (chir-pine) and Quercus leucothchophora (banj-oak) are dominant forests of mountainous part of the Uttarakhand Himalaya. The continued anthropogenic disturbance is opening the canopy, forming canopy gaps and as a result forest fragments are developing. Thus, the present study aims to analyze variations in species richness and vegetational parameters in relation to canopy gaps in forests. Total species richness was greater in open canopied forest compared to moderate and close canopied forests. In comparison between oak and pine forest, it was greater in oak forest while the proportion of common species was low between oak—pine forests. Mean species richness did not significantly vary from one canopy gap to another as well as in oak and pine dominated forest. This indicated that dominant forest types played an important role to form the community structure. The shrubs richness were greater in closed canopy and between the forests it was greater in pine forest. Tree and shrub density was low in open canopy while herb density was high in moderate canopy. Thus, this study indicated that the dominant canopy species play an important role in deciding the community structures especially the distribution of under canopy species. These parameters should be considered for conservation and maintenance of plant biodiversity of a region.  相似文献   

17.
三峡库区主要森林植被类型土壤有机碳贮量研究   总被引:7,自引:0,他引:7  
根据全国森林资源清查资料,按主要优势树种和分布面积将三峡库区主要森林植被划分为马尾松针叶林、栎类混交林、灌木林等11种主要森林植被类型。基于196个土壤剖面数据,分析了11种主要森林植被类型下土壤有机碳含量、碳密度大小和分配特征。研究发现,三峡库区主要森林植被类型下土壤有机碳含量和碳密度均存在较大差异,二者总体上都随土层加深而降低。11种主要森林植被类型中以杉木针叶林土壤有机碳密度最大,达16.0 kg/m2,温性松林下土壤碳密度最小,仅为7.9 kg/m2。不同植被类型下土壤有机碳贮量在土层中的分配比例也不同,以灌木林和柏木林土壤碳贮量在土层间的差异最大。11种主要森林植被类型土壤平均厚度为56.3~98.5 cm,其中杉木针叶林土壤最厚,达98.5 cm,灌丛土壤最薄,平均厚度仅56.3 cm。三峡库区11种主要森林植被类型总面积为3 313 251 hm2,土壤总有机碳贮量为 366.36 t,其中0~10、10~20、20~40和>40 cm土层分别占22.90%、18.36%、28.33%和30.41%。  相似文献   

18.
The tropical deciduous forest in Bangladesh provides a substantial part of country’s forest and where the government has introduced participatory agroforestry landuse. This study examined management issues, financial viability, and environmental as well as social sustainability of this landuse system. The forest department allocated a plot of size 1.0 ha among the selected participants where they were allowed to practice agriculture as well as to plant tree species for 10 years. The financial indicators indicated that the landuse system was profitable and attractive [net present value (NPV) = US$ 17,710 and benefit-cost ratio (BCR) = 4.12]. It was also viable and suitable from the social and environmental stand points. The study concluded that under the present environmental and socio-economic scenario, this production system could be the best management tool that would earn money, stop forest degradation, and finally be a model of sustainable land management in an overpopulated country.  相似文献   

19.
In the Segara Anakan lagoon, Java, 21 tree species and 5 understorey genera have been identified. Average tree density is 0.80 ± 0.99 Ind./m2 with 48.71% seedlings and an average basal area of 9.86 ± 10.54 cm2/m2. Tree density and diversity are high in the eastern part of the lagoon, located near the city of Cilacap. There, the dominant tree species are Aegiceras corniculatum, Nypa fruticans and Rhizophora apiculata, of which the two latter are characteristic for mature forests. By contrast, understorey species and the pioneer species (Avicennia alba, Aegiceras corniculatum and Sonneratia caseolaris) dominate the central lagoon where several rivers discharge. Compared to former studies, seedling density and tree diameter in the central lagoon has declined considerably and tree species dominance has changed. The high sedimentation rates and deforestation are likely to prevent the formation of a mature forest there. Tree communities are more equilibrated in the eastern lagoon which points to a more stable and less disturbed mangrove forest.  相似文献   

20.
云南省高原典型森林植被涵养水源功能研究   总被引:10,自引:0,他引:10  
利用水量平衡原理对云南省高原3种典型森林植被的林冠截留、枯落物持水和土壤蓄水能力进行比较研究。结果表明:土壤蓄水是森林发挥涵养水源功能的最主要途径;从林冠截留量和截留率两个指标来看,林冠截水能力排序为高山松林(209.87 t/hm2、28.87%)>白桦林(194.17 t/hm2、19.82%)>川滇高山栎灌丛(111.78 t/hm2、16.32%);对于枯落物持水能力:最大持水量排序为高山松林(35.79 t/hm2)>白桦林(24.52 t/hm2)>川滇高山栎灌丛(18.49 t/hm2);最大持水率排序为川滇高山栎灌丛(177.42%)>白桦林(152.08%)>高山松林(138.48%);土壤蓄水能力排序为川滇高山栎灌丛(673.19 t/(hm2·a))>高山松林(610 t/(hm2·a))>白桦林(549.84 t/(hm2·a));在同一森林单位面积上,涵养水源能力排序为高山松林(855.66 t/hm2)>川滇高山栎灌丛(803.46 t/hm2)>白桦林(768.53 t/hm2)。研究可为森林生态效益核算和管理奠定基础,且对制定适应气候变化的策略有着科学指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号