首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   4篇
环保管理   1篇
综合类   8篇
基础理论   2篇
污染及防治   3篇
评价与监测   6篇
  2024年   2篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2011年   1篇
排序方式: 共有20条查询结果,搜索用时 201 毫秒
1.
杭州大气颗粒物散射消光特性及霾天气污染特征   总被引:7,自引:6,他引:1  
徐昶  叶辉  沈建东  孙鸿良  洪盛茂  焦荔  黄侃 《环境科学》2014,35(12):4422-4430
2011年7月~2012年6月期间,对大气散射系数、颗粒物浓度及气象因子进行同步观测,以评估颗粒物散射消光对杭州市大气能见度的影响.结果表明,杭州市大气颗粒物散射系数日均值变化范围为108.4~1 098.1 Mm-1,年均值为428.62Mm-1±200.2 Mm-1.散射系数呈明显的季节变化,秋冬高,夏季低.日变化呈典型的双峰型,早峰出现在08:00,晚峰出现在21:00.PM2.5和PM10的散射效率分别为7.6 m2·g-1和4.4 m2·g-1,颗粒物散射消光占总消光比例的90.2%.灰霾和重度灰霾天气下,散射系数分别为684.4 Mm-1±218.1 Mm-1和1 095.4 Mm-1±397.7 Mm-1,达到非霾天气的2.6和4.2倍,表明颗粒物散射消光作用是导致杭州市大气能见度下降和灰霾天气发生的主要因素.  相似文献   
2.
利用2021年1~12月杭州市城区大气VOCs的观测数据,分析了VOCs化学组成及其污染特征,运用正交矩阵因子分解法(PMF)进行VOCs来源解析,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(AFP),量化评估其二次污染生成贡献.结果显示,观测期间杭州市大气VOCs体积分数均值为30.65×10-9,烷烃和卤代烃是其主要组分,分别占49.23%和24.47%,浓度排名前10的VOCs物种主要为C2~C4的烷烃、C7~C8的芳香烃和乙烯.源解析结果显示杭州市VOCs主要来源为燃烧源、溶剂使用源、工业排放源、油气挥发源和机动车尾气排放源.杭州市大气VOCs的总OFP为50.56×10-9,其中乙烯、1-乙基-3-甲基苯和甲苯是其主要贡献组分.芳香烃对AFP的贡献达到91.52%,是最重要的SOA前体物.因此,控制机动车尾气排放和溶剂使用过程中产生的VOCs对防控O3  相似文献   
3.
杭州黑碳气溶胶污染特性及来源研究   总被引:5,自引:0,他引:5  
2011年7月~2012年6月对黑碳气溶胶(BC)、PM2.5、污染气体及气象因子进行同步观测,以评估杭州市BC污染特征、来源分布及对大气能见度的影响.结果表明:杭州市大气BC日均浓度范围为1.3~16.5μg/m3,年均值达到(5.1±2.5)μg/m3.BC呈明显的季节变化趋势,秋冬季高,夏季低.BC也呈典型的日变化趋势,交通高峰期高,下午低,同时与NOx呈较好的相关性,表明城市中BC受到机动车尾气排放的重要影响;而BC/CO低于其他城市则表明生物质燃烧排放可能是杭州BC的另一大重要来源.BC随风速下降呈上升趋势, BC超过10μg/m3的高浓度事件中,风速基本低于2m/s,北-西北-西风对高浓度BC的输送作用明显.观测期间BC的吸收系数为(44.8±23.0)Mm-1,占到总消光比例的10.4%.灰霾和重度灰霾天气下,吸收系数分别为(66.2±30.1),(100.2±49.2)Mm-1,达到非霾天气的2.2和3.4倍, 表明BC吸收消光作用是影响杭州市大气能见度下降和灰霾天气发生的重要因素之一.  相似文献   
4.
杭州市灰霾与非灰霾日不同粒径大气颗粒物来源解析   总被引:5,自引:0,他引:5  
在2011年典型灰霾和非灰霾天气下,采集了杭州市不同粒径的大气颗粒物样品,测定并分析各粒径段颗粒物的质量浓度及其化学成分;同时采集并分析了主要污染源排放的颗粒物样品,通过CMB(化学质量平衡)模型进行源解析. 结果表明:灰霾天气下,二次粒子是杭州市各粒径段颗粒物的首要贡献源,其对≤1.1、>1.1~3.3、>3.3~5.8和>5.8~10μm粒径段的颗粒物贡献率分别为60.4%、62.2%、54.8%和46.5%. 在一次排放源中,机动车尾气是≤1.1和>1.1~3.3μm粒径段颗粒物的重要来源,贡献率分别为13.8%和12.2%;城市扬尘是>3.3~5.8μm粒径段颗粒物的重要来源,贡献率达到16.0%;而建筑施工尘是>5.8~10μm粒径段颗粒物的重要来源,贡献率为14.2%. 非灰霾天气下,随着颗粒物粒径的增加,二次粒子的贡献率显著下降,对≤1.1μm粒径段颗粒物的贡献率为42.7%,而对>5.8~10μm粒径段颗粒物的贡献率仅为15.5%;机动车是各粒径段颗粒物的重要贡献源,贡献率均在20%以上;煤烟尘是≤3.3μm细粒径段颗粒物的重要贡献源类,贡献率为22.0%;城市扬尘是>3.3~5.8μm粒径段颗粒物的重要来源,贡献率为18.3%;建筑施工尘依然是>5.8~10μm粒径段颗粒物的重要来源,贡献率为21.4%.   相似文献   
5.
在世界无车日期间对PM2.5化学组分、光学参数及气态污染物进行同步监测,评估机动车尾气排放对杭州市细颗粒物污染及能见度的影响.结果表明:管制期间NO2、NOx、CO和PM2.5浓度分别为45.0, 50.8, 1119, 85.8μg/m3,比平日分别下降了17.5%、23.3%、20.6%和32.6%.管制期间PM2.5中OC、EC和二次无机组分浓度为8.58, 4.29, 25.95μg/m3,比管制前下降了13.8%、12.6%和15.7%,管制后则达到20.24, 10.85, 27.39μg/m3,上升了136.0%、152.7%和5.5%.管制期间较高的NO3-/PM2.5和NOR(0.15)表明PM2.5的形成更多受二次无机转化影响,管制后PM2.5中上升的OC、EC比例和较低的NOR(0.07)则说明PM2.5主要来自机动车排放的碳质组分的贡献.硫酸盐、硝酸盐、有机气溶胶和EC是最主要的消光组分,共解释了总消光系数的74.0%~89.7%.管制后,机动车排放的有机物和EC消光比例达到26.6%和24.6%,大气消光系数则达到438.7Mm-1,比管制期间上升了60.5%,表明机动车污染排放已成为影响杭州大气细颗粒物污染和能见度下降的重要因素.  相似文献   
6.
CS2在TiO2表面的多相光化学反应研究   总被引:1,自引:0,他引:1  
本文运用原位漫反射红外光谱(DRIFTS)、GC、XPS等手段研究了CS2在大气半导体颗粒TiO2表面的多相光化学反应.结果表明在模拟太阳光照射下,低浓度的CS2(8.1 mg·m(-3))在TiO2:表面发生多相光化学反应,生成气态产物cos、H2S、SO2,进而在颗粒物表面生成硫酸盐.在氧气体积浓度为21%,氙灯照...  相似文献   
7.
利用朝晖超级站多参数环境空气观测数据和后向轨迹模型,对杭州G20期间会期一次短时PM2. 5污染事件进行了分析。结果表明,由于采取了严格的污染管控措施,杭州G20峰会期间整体空气质量较好。会期9月4日凌晨发生了PM2. 5短时污染事件,其小时浓度达到100μg/m3,PM2. 5中无机离子短时有数倍的增长,NOR在5小时内增长了10倍。激光雷达观测和后向轨迹模型计算显示来自河北南部、山东和江苏北部的气溶胶污染团通过长程传输经东海进入杭州后快速下沉是造成该短时污染事件发生的主要原因。  相似文献   
8.
利用2013—2017年杭州市空气质量国控监测站点数据和杭州市地面气象数据,分析了杭州市几种典型情况的臭氧(O_3)污染特征。结果表明:(1)2013—2017年,杭州市O_3污染问题总体呈逐年加重趋势;(2)夏季太阳总辐射大于450 W/m~2、温度高于20℃且相对湿度低于70%的晴热高温天气易造成O_3污染;(3)杭州市O_3浓度还可能受外来输入的影响;(4)受台风外围下沉气流影响,加上水平扩散条件差且温度高,极易导致O_3及其前体物在近地面积聚。  相似文献   
9.
设计了多通道大气颗粒物采样器,可同时采集4个通道的PM_(2.5)样品,灵活配置采样通道的开启,每个通道单独设置质量流量计,采用闭环反馈技术,通过比例阀、流量传感器及流量控制板共同控制和校正采样流量,保证通道流量的稳定性。与单通道采样器(BGI PQ 200)进行了为期30 d的比对测试,结果表明,多通道采样器斜率、截距和相关系数均符合《环境空气颗粒物(PM10和PM_(2.5))采样器技术要求及检测方法》(HJ 93—2013)的要求,可满足实际应用需求。  相似文献   
10.
杭州城区春节PM2.5中水溶性离子在线观测   总被引:6,自引:4,他引:2  
利用大气细颗粒物水溶性组分在线连续监测分析系统(AIM-URG9000D),考察了杭州城区春节期间PM2.5中无机水溶性离子的浓度变化范围,探讨了这些离子的日变化特征和影响因素,同时分析了集中燃放烟花爆竹对水溶性离子浓度的影响。结果表明,SO2-4、NO-3、NH+4是PM2.5中水溶性离子的主要成分,分别占全部水溶性组分的33.3%、28.4%、19.4%;强致癌物质NO-2浓度为2.07μg/m3,远大于膜采样结果;NO-3与SO2-4的质量比为0.85,表明机动车尾气排放导致的大气污染正逐步加重;各水溶性离子有着各自不同的日变化规律。相关性分析表明,NH+4与NO-3、SO2-4的相关系数分别为0.92、0.81;K+、Cl-、Mg2+3者之间的相关系数均在0.9以上。烟花爆竹燃放期间,PM2.5浓度急剧上升,Cl-、SO2-4、K+、Mg2+浓度分别达到燃放前的18、6、53、76倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号