首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6936篇
  免费   1070篇
  国内免费   3460篇
安全科学   488篇
废物处理   407篇
环保管理   833篇
综合类   6426篇
基础理论   1037篇
环境理论   4篇
污染及防治   1030篇
评价与监测   379篇
社会与环境   528篇
灾害及防治   334篇
  2024年   63篇
  2023年   251篇
  2022年   415篇
  2021年   446篇
  2020年   413篇
  2019年   434篇
  2018年   424篇
  2017年   465篇
  2016年   520篇
  2015年   566篇
  2014年   576篇
  2013年   825篇
  2012年   871篇
  2011年   888篇
  2010年   547篇
  2009年   475篇
  2008年   367篇
  2007年   459篇
  2006年   462篇
  2005年   301篇
  2004年   225篇
  2003年   221篇
  2002年   179篇
  2001年   201篇
  2000年   174篇
  1999年   129篇
  1998年   101篇
  1997年   95篇
  1996年   71篇
  1995年   73篇
  1994年   61篇
  1993年   64篇
  1992年   40篇
  1991年   26篇
  1990年   12篇
  1989年   6篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Biomethane production through biogas upgrading is a promising renewable energy for some industries which could be part of the equilibrium needed with fossil fuels consumption to achieve a sustainable society. This paper presents a comprehensive list of biogas upgrading technologies focused on carbon dioxide removal as well as recent advances reported by researcher with wide expertise in this topic. Additionally, an extensive costs–performance comparison among the technologies studied is discussed. Among the different alternatives, chemical scrubbing stood out to achieve high biomethane purities while cryogenic technologies proved to be effective against methane losses. Regarding the different costs, water scrubbing and membrane separation seem to be the most affordable techniques.  相似文献   
2.
采用2013年环境空气自动监测数据,分析杭州市空气中黑碳质量浓度的变化规律,并对变化特征的产生原因进行探讨。结果表明:黑碳测定年均值为4.10μg/m3,日变化有明显双峰结构,峰值出现在早7时和晚8时左右;从季节看,黑碳质量浓度冬季高(5.20μg/m3)、夏季低(3.00μg/m3);黑碳质量浓度与NO2、CO、PM10、PM2.5显著相关,与O3、风速、气温呈负相关,降水对黑碳的清除作用明显。  相似文献   
3.
When accounting the CO2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers’ and the consumers’ responsibility,since this will promote fairness in defining emission responsibility and enhance cooperation in emission reduction among provinces.This paper proposes a new method for calculating carbon emissions from the power sector at the provincial level based on the shared responsibility principle and taking into account interregional power exchange.This method can not only be used to account the emission responsibility shared by both the electricity production side and the consumption side,but it is also applicable for calculating the corresponding emission responsibility undertaken by those provinces with net electricity outflow and inflow.This method has been used to account for the carbon emissions responsibilities of the power sector at the provincial level in China since 2011.The empirical results indicate that compared with the production-based accounting method,the carbon emissions of major power-generation provinces in China calculated by the shared responsibility accounting method are reduced by at least 10%,but those of other power-consumption provinces are increased by 20% or more.Secondly,based on the principle of shared responsibility accounting,Inner Mongolia has the highest carbon emissions from the power sector while Hainan has the lowest.Thirdly,four provinces,including Inner Mongolia,Shanxi,Hubei and Anhui,have the highest carbon emissions from net electricity outflow- 14 million t in 2011,accounting for 74.42% of total carbon emissions from net electricity outflow in China.Six provinces,including Hebei,Beijing,Guangdong,Liaoning,Shandong,and Jiangsu,have the highest carbon emissions from net electricity inflow- 11 million t in 2011,accounting for 71.44% of total carbon emissions from net electricity inflow in China.Lastly,this paper has estimated the emission factors of electricity consumption at the provincial level,which can avoid repeated calculations when accounting the emission responsibility of power consumption terminals(e.g.construction,automobile manufacturing and other industries).In addition,these emission factors can also be used to account the emission responsibilities of provincial power grids.  相似文献   
4.
Background, Aim and Scope Air quality is an field of major concern in large cities. This problem has led administrations to introduce plans and regulations to reduce pollutant emissions. The analysis of variations in the concentration of pollutants is useful when evaluating the effectiveness of these plans. However, such an analysis cannot be undertaken using standard statistical techniques, due to the fact that concentrations of atmospheric pollutants often exhibit a lack of normality and are autocorrelated. On the other hand, if long-term trends of any pollutant’s emissions are to be detected, meteorological effects must be removed from the time series analysed, due to their strong masking effects. Materials and Methods The application of statistical methods to analyse temporal variations is illustrated using monthly carbon monoxide (CO) concentrations observed at an urban site. The sampling site is located at a street intersection in central Valencia (Spain) with a high traffic density. Valencia is the third largest city in Spain. It is a typical Mediterranean city in terms of its urban structure and climatology. The sampling site started operation in January 1994 and monitored CO ground level concentrations until February 2002. Its geographic coordinates are W0°22′52″ N39°28′05″ and its altitude is 11 m. Two nonparametric trend tests are applied. One of these is robust against serial correlation with regards to the false rejection rate, when observations have a strong persistence or when the sample size per month is small. A nonparametric analysis of the homogeneity of trends between seasons is also discussed. A multiple linear regression model is used with the transformed data, including the effect of meteorological variables. The method of generalized least squares is applied to estimate the model parameters to take into account the serial dependence of the residuals of this model. This study also assesses temporal changes using the Kolmogorov-Zurbenko (KZ) filter. The KZ filter has been shown to be an effective way to remove the influence of meteorological conditions on O3 and PM to examine underlying trends. Results The nonparametric tests indicate a decreasing, significant trend in the sampled site. The application of the linear model yields a significant decrease every twelve months of 15.8% for the average monthly CO concentration. The 95% confidence interval for the trend ranges from 13.9% to 17.7%. The seasonal cycle also provides significant results. There are no differences in trends throughout the months. The percentage of CO variance explained by the linear model is 90.3%. The KZ filter separates out long, short-term and seasonal variations in the CO series. The estimated, significant, long-term trend every year results in 10.3% with this method. The 95% confidence interval ranges from 8.8% to 11.9%. This approach explains 89.9% of the CO temporal variations. Discussion The differences between the linear model and KZ filter trend estimations are due to the fact that the KZ filter performs the analysis on the smoothed data rather than the original data. In the KZ filter trend estimation, the effect of meteorological conditions has been removed. The CO short-term componentis attributable to weather and short-term fluctuations in emissions. There is a significant seasonal cycle. This component is a result of changes in the traffic, the yearly meteorological cycle and the interactions between these two factors. There are peaks during the autumn and winter months, which have more traffic density in the sampled site. There is a minimum during the month of August, reflecting the very low level of vehicle emissions which is a direct consequence of the holiday period. Conclusions The significant, decreasing trend implies to a certain extent that the urban environment in the area is improving. This trend results from changes in overall emissions, pollutant transport, climate, policy and economics. It is also due to the effect of introducing reformulated gasoline. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of CO. The KZ filter has been the most effective method to separate the CO series components and to obtain an estimate of the long-term trend due to changes in emissions, removing the effect of meteorological conditions. Recommendations and Perspectives Air quality managers and policy-makers must understand the link between climate and pollutants to select optimal pollutant reduction strategies and avoid exceeding emission directives. This paper analyses eight years of ambient CO data at a site with a high traffic density, and provides results that are useful for decision-making. The assessment of long-term changes in air pollutants to evaluate reduction strategies has to be done while taking into account meteorological variability  相似文献   
5.
The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east–west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There is a risk of misinterpreting C stocks in Amazonia when such great pedological variability is not taken into account.  相似文献   
6.
期权理论在排污权初始分配中的应用   总被引:16,自引:0,他引:16  
排污权交易是当前总量控制目标下最具潜力的环境政策,它兼有环境质量保障和成本效率优化的特点.在对国内外排污权交易和初始分配充分考察的基础上,提出了在排污权初次分配中引入期权机制的尝试,并对这种方法的理论基础作了分析和讨论.  相似文献   
7.
根据环境意识结构.设计了旅游管理部门环境意识调查问卷。其主要的指标体系包括:旅游环境知识水平、旅游环境态度、旅游环境评价和旅游环境行为四个方面。对指标体系各部分之间以及每一指标部分的每一题目之间的相对重要性进行权重的确定.而且对各部分的每道题目的各个选项予以赋分。基于权重和赋分.结合调查问卷的实际情况,设计了指标体系各部分评价模型和环境意识总体评价模型。以此来计算草原旅游发展中旅游管理部门环境意识水平的综合得分。经过分析得知,旅游管理部门环境意识模式是“环境知识制约型”模式。  相似文献   
8.
The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coalmines and six thermal power stations that generate about 7,500 MW (about 10% of India’s installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.  相似文献   
9.
为探究长春秋季生物质燃烧对PM_(2.5)中水溶性有机碳(water-soluble organic carbon,WSOC)吸光性的影响,于2017年10~11月进行PM_(2.5)样品采集,对PM_(2.5)中碳质组分、糖类化合物和WSOC的光吸收特征参数进行分析.研究表明:长春秋季PM_(2.5)中WSOC、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)的平均浓度分别为(10.12±3.47)、(17.07±5.64)和(1.34±0.75)μg·m~(-3),二次有机碳(secondary organic carbon,SOC)对OC的平均贡献率为38.93%.长春秋季总糖浓度为(1 049.39±958.85)ng·m~(-3),其中作为生物质燃烧示踪剂的脱水糖含量(左旋葡聚糖、半乳聚糖和甘露聚糖)在总糖中占比为91.69%,糖类相关性分析结果显示生物质燃烧源为长春秋季大气中糖类物质的主要贡献源.糖类物质的相关性分析及3种脱水糖的特征比值研究显示,作为长春秋季大气主要污染源的生物质燃烧的类型是硬木和作物残渣的燃烧.长春秋季WSOC的光吸收波长指数(AAE)为5.75±1.06,单位质量吸收效率(MAE)为(1.23±0.28)m~2·g~(-1),表明生物质燃烧对WSOC吸光性具有重要影响.利用生物质燃烧特征源参数量化计算生物质燃烧对WSOC浓度的贡献达58.82%,对总WSOC光吸收的贡献达40.92%.  相似文献   
10.
王凯  樊守彬  亓浩雲 《环境科学》2020,41(6):2602-2608
利用车载排放测试技术对典型的联合收割机、拖拉机、农用运输车和农田建设机械实际工况下的尾气进行测试,建立了实际工况下农业机械的排放因子和2017年北京市农用机械排放清单.结果表明,不同的工作状态对农业机械尾气排放有较大的影响,怠速和行走时CO、NO_x、HC和PM排放趋于平稳;而切地和翻地模式下的波动较为明显.根据各类机械的分类和排放标准对排放因子进行细化,建立了较为完整的实际工况下的排放因子.根据农业机械排放因子和燃油消耗量计算出2017年北京市CO、NO_x、HC和PM的排放量分别是2 566.60、 1 239.29、 563.08和538.32 t.拖拉机、运输机械和联合收割机的污染物总量占CO、NO_x、HC和PM这4种污染物总量的98%、 95%、 95%和98%.因此,农用拖拉机、运输机械和联合收割机在农业机械污染减排中应作为重点控制对象.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号