首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   1篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   13篇
基础理论   14篇
污染及防治   45篇
评价与监测   8篇
社会与环境   7篇
  2023年   3篇
  2022年   11篇
  2021年   6篇
  2020年   6篇
  2019年   10篇
  2018年   4篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有90条查询结果,搜索用时 187 毫秒
81.
A framework is proposed for forecasting industrial water demand in the context of climate change, economic growth, and technological development. The framework was tested in five sub-basins of Huaihe River of China, namely Upstream of Huaihe River (UH), Middlestream of Huaihe River (MH), Downstream of Huaihe River (DH), Yishusi River (YSSR), and Coastal River of Shandong Peninsula (CSP) to project future changes in industrial water demand under different environment change scenarios. Results showed that industrial water demand in Huaihe River basin will increase in the range of 10 to 44.6% due to economic development, water-saving technological advances, and climate change. The highest increase was projected by general circulation model (GCM) BCC-CSM1–1 (179.16 × 108 m3) and the lowest by GCM GISS-E2-R (132.4 × 108 m3) in 2020, while the GCM BNU-ESM projected the highest increase (190.57 × 108 m3) and GCM CNRM-CM5 the lowest (160.41 × 108 m3) in 2030. Among the different sub-basins, the highest increase was projected in MH sub-basin where industrial water demand is already very high. On the other hand, the lowest increase in industrial water demand was projected in UH sub-basin. The rapid growth of high water-consuming industries and increased water demand for cooling due to temperature rise are the major causes of the sharp increase in industrial water demand in the basin. The framework developed in the study can be used for reliable forecasting of industrial water demand which in turn can help in selection of an appropriate water management strategy for adaptation to global environmental changes.  相似文献   
82.
The ecology of resource pulses   总被引:1,自引:0,他引:1  
Yang LH  Naeem S 《Ecology》2008,89(3):619-620
  相似文献   
83.
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil–plant–atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg?1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China’s Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60–79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.  相似文献   
84.
Water resources are an integral part of the socio-economic-environmental system. Water resources have dynamic interactions with related social, economic and environmental elements, as well as regulatory factors that are characterized by non-linear and multi-loop feedbacks. In this paper, a complex System Dynamic (SD) model is used to study the relationship among population growth, economic development, climate change, management strategies and water resources, and identify the best management strategy to adapt with the changing environment in the Tuwei river basin of Northwest China. Three management alternatives viz. business as usual, water supply management and water demand management are studied under different climate change scenarios. Results indicate that water shortage rate in Tuwei river basin may increase up to 80 % by the year 2030 if current management practices are continued or the supply based management strategy is adopted. On the other hand, water demand management can keep the water shortage rate within a tolerable limit and therefore can be considered as the sustainable strategy for water resources management to maintain the economic growth and ecological status of the Tuwei river basin.  相似文献   
85.
Environmental Science and Pollution Research - Sustainability in the utilization of products in all fields particularly food textiles, solar cells, etc. is of prime concern to the global community....  相似文献   
86.
Environmental Science and Pollution Research - This study examines the endogenous growth theory for technological innovation and economic growth with the role of foreign direct investment (FDI) and...  相似文献   
87.
Environmental Science and Pollution Research - Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values...  相似文献   
88.
Environmental Science and Pollution Research - The worldwide resurgence of natural dyes in all fields is due to the carcinogenic effects of effluent loads shed by synthetic industries. Coconut coir...  相似文献   
89.
Environment, Development and Sustainability - The low water storage capacity caused water crisis in Pakistan; therefore, the country needs both small- and large-scale reservoirs to store surplus...  相似文献   
90.
Environmental Science and Pollution Research - This study evaluates the future climate fluctuations in Iran’s eight major climate regions (G1–G8). Synoptic data for the period...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号