首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   4篇
  国内免费   1篇
安全科学   3篇
废物处理   12篇
环保管理   8篇
综合类   13篇
基础理论   33篇
污染及防治   33篇
评价与监测   13篇
社会与环境   10篇
灾害及防治   5篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   10篇
  2011年   8篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  1999年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
91.
92.
Journal of Polymers and the Environment - Green methods of modification, such as ozone, can bring new functionalities to starch. In this study, starch-based plastics were produced by extrusion,...  相似文献   
93.
94.
The electrochemical performance of pure Ti–Pt/β-PbO2 electrodes, or doped with Fe and F (together or separately), in the oxidation of simulated wastewaters containing the Blue Reactive 19 dye (BR-19), using a filter-press reactor, was investigated and then compared with that of a boron-doped diamond electrode supported on a niobium substrate (Nb/BDD). The electrooxidation of the dye simulated wastewater (volume of 0.1 l, with a BR-19 initial concentration of 25 mg l−1) was carried out under the following conditions: current density of 50 mA cm−2, volume flow rate of 2.4 l h−1, temperature of 25 °C and electrode area of 5 cm2. The performances of the electrodes in the dye decolorization were quite similar, achieving 100% decolorization, and in some cases 90% decolorization was achieved by applying only ca. 0.3 A h l−1 (8 min of electrolysis). The reduction of the simulated wastewater organic load, monitored by its total organic carbon content (TOC), was greater for the Ti–Pt/β-PbO2–Fe,F electrode obtained from an electrodeposition bath containing 1 mM Fe3+ and 30 mM F. In this case, after 2 h of electrolysis the obtained TOC reduction was 95%, while for the pure β-PbO2 and the Nb/BDD electrodes the reductions were 84% and 82%, respectively.  相似文献   
95.
Mining activity in the North of Potosi (Siglo XX mine, Ingenio Catavi-Siglo XX, Pucro mine and Colquechaca mine) produces minewater containing high concentrations of heavy metals such as As (0.02-34 mg/l), Cd (45-11,600 microg/l), Cu (0.35-32 mg/l), Fe (42-1,010 mg/l), Pb(33-3,130 microg/l), Ni(20-4,320 microg/l), and Zn (1.1-485 mg/l), that exceed considerably the limit values. The rivers in the North of Potosi (Katiri and Pongoma) that do not receive minewater contain clear water with rather low heavy metal concentrations. These rivers and also other rivers contaminated with minewater, are tributaries of the Chayanta River that transports water with a high concentration of heavy metals such as As (6-24 microg/l), Cd (260-2,620 microg/l), Cu (205-812 microg/l), Pb(10-21 microg/l) and Ni(110-332 microg/l). These elements result from mining activity, as indicated by a comparison with rivers not contaminated by minewater discharges. Water of the Chayanta River, used all year long by the population of Quila Quila, (a village situated at about 75 km from the mining centers), for the irrigation of crops such as potato, maize and broad bean, contains heavy metal concentrations exceeding for several elements the guidelines for irrigation. As drinking water the population of Quila Quila consumes spring water with a generally acceptable heavy metal concentration, as well as infiltrated water of Chayanta River (which is also used in animal drinking troughs) with a high concentration of Cd (23-63 microg/l), exceeding the limit value for drinking water. The metal concentration is significantly lower in the infiltrated water than in the water of Chayanta River. Some technological solutions are suggested to improve the quality of the water used. Surveys carried out on inhabitants of the region, showed that many people present health problems, probably to be attributed to the bad quality of the water they consume and use for irrigation.  相似文献   
96.
97.
Abstract

An industrial-scale, profitable method for production of the most widely used bioinsecticide, Bacillus thuringiensis (Bt), is challenging because of its widespread application. The aim of this study is to present a strategy to develop a low-cost, large-scale bioprocess to produce Bt H14.

This study was first focused on the design of a culture medium composed of economical and available components, such as glycerol and lysed Saccharomyces cerevisiae. The production goal of 1200 ITU was achieved using a medium composed of 20:20 g L?1of glycerol:lysed yeast in batch cultures. Efforts were subsequently focused on the design of an appropriate culture system, and an original two-stage culture system was proposed. First, yeast (the primary component of the culture medium) are cultivated using a minimal mineral medium and lysed, and in the second stage, Bt is cultivated in the same bioreactor using the lysed yeasts as culture medium (supplemented with a feeding pulse of 10 g L?1 glycerol). This system was called fed batch one pot (FOP). A new inoculation strategy is also presented in this study, since these Bt cultures were inoculated directly with heat pre-treated spores instead of vegetative bacteria to facilitate the bioprocess. This study was developed from the laboratory to production-scale bioreactors (measuring from 500 mL to 2500 L), and the efficiency of the proposed strategy was evident in LD50 tests results, achieving 1796 ITU in large-scale processes. Both the use of non-conventional sources and the process development for biomass production are important for cost-effective production of Bt-based insecticides in mosquito control projects.  相似文献   
98.
Formaldehyde, acetaldehyde, acetone, propanal, butanal, 2-butenal, 3-methylbutanal, hexanal, benzaldehyde, 2-methylbenzaldehyde, and 2,5-dimethylbenzaldehyde were measured during six spring days at downtown Santiago de Chile. Measurements were performed 24h/day and averaged over three hour periods. The averages of the maxima (ppbv) were, formaldehyde: 3.9+/-1.4; butanal: 3.3+/-3.4; acetaldehyde: 3.0+/-0.9; acetone: 2.4+/-1.0; 2-butenal: 0.56+/-0.52; propanal: 0.46+/-0.21; benzaldehyde: 0.34+/-0.3; 3-butanal: 0.11+/-0.05; hexanal: 0.11+/-0.08; 2-methylbenzaldehyde: 0.08+/-0.05; 2,5-dimethylbenzaldehyde: 0.05+/-0.03. Aliphatic aldehydes (C1-C3) are strongly correlated among them and weakly with primary (toluene) and secondary (ozone plus nitrogen dioxide or PAN) pollutants. In particular, the correlation between acetaldehyde and propanal values remains even if diurnal and nocturnal data are considered separately, indicating similar sources. All these aldehydes present maxima values in the morning (9-12h) and minima at night (0-3h). The best correlation is observed when butanal and 2-butenal data are considered (r=0.99, butanal/2-butenal=6.2). These compounds present maxima values during the 3-6h period, with minima values in the 0-3h period. These data imply a strong pre-dawn emission. Other aldehydes show different daily profiles, suggesting unrelated origins. Formaldehyde is the aldehyde whose concentration values best correlate with the levels of oxidants. The contribution of primary emissions and photochemical processes to formaldehyde concentrations were estimated by using a multiple regression. This treatment indicates that (32+/-16)% of measured values arise from direct emissions, while (79+/-23)% is attributable to secondary formation.  相似文献   
99.
An extreme example of a low light-level lifestyle among flying birds is provided by the oilbird, Steatornis caripensis (Steatornithidae, Caprimulgiformes). Oilbirds breed and roost in caves, often at sufficient depth that no daylight can penetrate, and forage for fruits at night. Using standard microscopy techniques we investigated the retinal structure of oilbird eyes and used an ophthalmoscopic reflex technique to determine the parameters of these birds visual fields. The retina is dominated by small rod receptors (diameter 1.3±0.2 m; length 18.6±0.6 m) arranged in a banked structure that is unique among terrestrial vertebrates. This arrangement achieves a photoreceptor density that is the highest so far recorded (1,000,000 rods mm–2) in any vertebrate eye. Cone photoreceptors are, however, present in low numbers. The eye is relatively small (axial length 16.1±0.2 mm) with a maximum pupil diameter of 9.0±0.0 mm, achieving a light-gathering capacity that is the highest recorded in a bird (f-number 1.07). The binocular field has a maximum width of 38° and extends vertically through 100° with the bill projecting towards the lower periphery; a topography that suggests that vision is not used to control bill position. We propose that oilbird eyes are at one end of the continuum that juxtaposes the conflicting fundamental visual capacities of sensitivity and resolution. Thus, while oilbird visual sensitivity may be close to a maximum, visual resolution must be low. This explains why these birds employ other sensory cues, including olfaction and echolocation, in the control of their behaviour in low-light-level environments.  相似文献   
100.
Although Chile has been touted for developing a broad market liberalization and opening to the international economy, evidence is emerging that such neoliberal economic policies are dramatically impacting biodiversity and the natural resource base. This paper examines the evidence on the plundering of forestry and fishery resources and the damming and pollution of aquatic ecosystems. Although it may be argued that economic liberalization policies have been effective in reallocating agricultural resources toward more competitive activities, the ecological toll imposed by the expansion of export-led modern agriculture has been heavy. An effective agricultural development strategy in Chile should confront such ecological costs and should promote alternatives to high input agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号