首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
安全科学   2篇
废物处理   1篇
环保管理   7篇
基础理论   2篇
污染及防治   9篇
评价与监测   1篇
社会与环境   4篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1982年   1篇
  1981年   4篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
The effects of human trampling and firewood gathering on eight backcountry campsites in the Great Smoky Mountains were surveyed. Sample plots were classified as sitecenter, transition, firewood-gathering area, and control. The canopy in the center of the sites tended to be more open than that of control plots, with the greatest openings occurring at shelter sites in spruce-fir forest. Intensive human trampling in the center of the sites inhibited reproduction of tree species, whereas firewood gathering alone did not. In some cases where canopy opening had occurred, there was an increase in shrub and tree reproduction around the edge of the site. Reduction in the basal area of standing deadwood varied with the type of site; older growth stands were less depleted. Injuries to trees increased tenfold from control areas to the center of the campsites. Smaller fuels were more strongly impacted by trampling and little impacted by firewood gathering. Woody fuels in the 2.5- to 7.6-cm size class were preferred for firewood. A previously constructed carbon cycling model was modified to incorporate removal of firewood and litter on campsites. The model suggested that after extended removal of leaf litter, soil carbon takes 12 to 50 years to recover, but this hypothesis remains to be tested in the field.  相似文献   
22.
Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.  相似文献   
23.
The problem of large-scale contamination of groundwater by relatively low levels of organic contaminants is most frequently addressed by extracting and treating the impacted groundwater. This pump-and-treat strategy is often unsuccessful because of difficulties encountered in recovering the contaminants from relatively immobile zones within the porous medium. These zones can exist at the particle scale, as intraparticle or intra-aggregate porosity, and at the larger scales, as low-permeability layers or lenses interspersed in substantially more permeable layers. This work focuses on achieving an efficient numerical solution to a system of groundwater flow and contaminant transport equations that sufficiently captures the dynamics of slow desorption in a two-dimensional porous medium. The conceptual model and governing equations are presented. A numerical method for solving the governing equations, the upstream-weighted, multiple cell balance (UMCB) method, is proposed. The UMCB algorithm has been employed previously for the case of solute transport with equilibrium sorption, and is extended here to the nonequilibrium case. The approach employs a finite-element basis function and a finite-difference local mass balance, and is designed to reduce computational and storage requirements, while minimizing the mass balance error. The computational grid is formed by division of the flow domain into triangular elements. An invented node at the center of each element divides the element into three subtriangular regions. By linking the center of each triangular element and the mid-point of each elemental side, a multiangular region, referred to as an exclusive subdomain, is defined. The discretized system of governing equations is derived from the integral form that describes the mass balance in the exclusive subdomain of each node. The paper details the application of the numerical method, and demonstrates that the method is reasonably accurate and computationally efficient for a two-dimensional domain subject to nonequilibrium sorption.  相似文献   
24.
The revised New Source Performance Standards (NSPS) for the utility industry mandates reduced particulate matter and sulfur dioxide emissions from new utility boilers. A wet scrubber system can be an advantage in controlling both of these emissions. Existing wet scrubber systems may meet the new standards with significant increase in power consumption. A careful design of the entire scrubber system, based on the experience gained at the existing installations, is necessary to ensure cost effectiveness. The experience with existing wet scrubber systems used on coal-fired utility boilers is reviewed and their performance is correlated with power consumptions. Based on a correlation of scrubber pressure drop against outlet concentration, conventional scrubber systems would be able to meet the revised NSPS for particulate matter with a theoretical scrubber pressure drop of 43±5 cm H2O. Overall system pressure drop, however, could easily run as high as 76 cm H2O. Novel scrubber systems such as the electrostatically augmented scrubber may provide the necessary collection performance at lower pressure drops. The performance of the various scrubber components such as mist eliminators and reheaters is reviewed. Operating problems are also discussed.  相似文献   
25.
Soil salinization is a potentially negative side effect of irrigation with reclaimed water. While optimization schemes have been applied to soil salinity control, these have typically failed to take advantage of real-time sensor feedback. This study incorporates current soil observation technologies into the optimal feedback-control scheme known as Receding Horizon Control (RHC) to enable successful autonomous control of soil salinization. RHC uses real-time sensor measurements, physically-based state prediction models, and optimization algorithms to drive field conditions to a desired environmental state by manipulating application rate or irrigation duration/frequency. A simulation model including the Richards equation coupled to energy and solute transport equations is employed as a state estimator. Vertical multi-sensor arrays installed in the soil provide initial conditions and continuous feedback to the control scheme. An optimization algorithm determines the optimal irrigation rate or frequency subject to imposed constraints protective of soil salinization. A small-scale field test demonstrates that the RHC scheme is capable of autonomously maintaining specified salt levels at a prescribed soil depth. This finding suggests that, given an adequately structured and trained simulation model, sensor networks, and optimization algorithms can be integrated using RHC to autonomously achieve water reuse and agricultural objectives while managing soil salinization.  相似文献   
26.
Harmon HJ 《Chemosphere》2006,63(7):1094-1097
Illumination of tetraphenyl porphyrin sulfonate (TPPS), CuTPPs and FeTTPPS in solution with trinitrotoluene (TNT) at pH7 at room temperature using tungsten lamp illumination results in the degradation of TNT to yield trinitrobenzoic acid and trinitrobenzene. No other degradation products are observed. The rate of TNT degradation follows the series TPPS > FeTPPS > CuTPPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号