首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   0篇
  国内免费   5篇
安全科学   15篇
废物处理   19篇
环保管理   53篇
综合类   26篇
基础理论   55篇
污染及防治   77篇
评价与监测   19篇
社会与环境   10篇
  2022年   6篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   5篇
  2013年   24篇
  2012年   15篇
  2011年   8篇
  2010年   14篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   20篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1982年   3篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
  1961年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有274条查询结果,搜索用时 93 毫秒
241.
We grew marineSynechococcus Clones WH7803 and WH8018 at 150µE m–2 s–1 in dilute batch cultures with NH 4 + as the limiting nutrient. The maximal uptake capacities for NH 4 + and NO 3 - were measured in frequent experiments during log and stationary phases of growth. Clone WH7803, originally isolated from oceanic waters, had a specific uptake rate of NH 4 + that approximated the maximum (log phase) specific growth rate (ca ~ 0.025 h–1). NO 3 - uptake was observed only after nitrogen in the media was depleted; the NO 3 uptake capacity was ca 12% the capacity for NH 4 + uptake throughout the nitrogen depleted period. Growth was arrested upon nitrogen depletion, but resumed soon after reinoculation into fresh media, even after 5 d of starvation. Clone WH8018, originally isolated from coastal waters, revealed a five-fold enhancement in the NH 4 + uptake rate relative to growth rate at the time of nitrogen depletion. As nitrogen starvation proceeded, this enhancement was reduced. This clone, too, was able to take up NO 3 - once nitrogen in the media was depleted, but only after ca 20 h. Growth continued for a limited period during nitrogen depletion, but nitrogen-starved cells were slow to recover upon reinoculation into fresh media. We speculate that clonal differences may reflect differences in the molecular regulation of nitrogen assimilation.  相似文献   
242.
243.
The simulated concentrations from a numerical 3-dimensional regional air quality model (MC2AQ) are compared to those of ground-based observations in north-eastern Canada and the United States. The model has oxidant chemistry for both inorganic and organic species and deposition routines driven online by a mesoscale compressible community meteorological model (MC2). A standard emission inventory of anthropogenic, natural and biogenic sources for the year 1990 for 21 atmospheric trace species was used in the simulation. The model was run for July 1999, because of the occurrence of a high ozone episode and the availability of the monitoring data for surface O3, SO2, NO, NO2 and NOx. The comparisons during the episode show that the model performs quite well for predicting concentrations and diurnal variations of the surface ozone. The predictions for other gaseous species show some discrepancies with observations, but they are consistent with the results from other models evaluated in the literature. The uncertainties in the emission inventory for these species might be the main causes of the discrepancies. Further studies are needed to improve the predictability of SO and NOx, especially as the model is developed to include particulate matter formation as a result of these gaseous precursors.  相似文献   
244.
Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0–10, 10–20, and 20–40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is now being analyzed for the 1986 treatment year. In leachate collected from the upper horizons of the soil colums, there was a significant difference in pH, alkalinity, nitrate, and sulfate concentrations between the pH 5.4 and pH 4.2 precipitation treatments. This difference, however, disappears at the bottom of the columns. This could be partly due to exchange reactions in the B horizon. The pH and alkalinities are higher in bottom leachate. Chloride and nitrate also increased significantly due mainly to concentrating effects. Even with a pickup of sulfate in the B horizon, sulfate adsorption decreased bottom leachate concentrations well below surface values.Alkalinity, pH, and sulfate concentration in the leachate decreased over the treatment season. Nitrate concentration increased by 4- to 5-fold over the season. Leachate from the bottom of the soil columns is becoming more acidic with time with negative alkalinities appearing more frequently in columns with soils of lower base saturation. There were some significant alkalinity differences due to humus treatments; however, these were not consistent between pH treatments, and need further study. This research will eventually answer whether soil processes can be important to the acidification of lakes in poor, sandy, outwash plains of the Superior Uplands, and whether a reduction in acid sulfate deposition will reverse the percolate alkalinity from negative to positive.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   
245.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope (SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between the various chemical components of the films.  相似文献   
246.
In this article we compared the response of surface water runoff to a storm event for different rates of urbanization, reforestation and riparian buffer setbacks across forty subwatersheds of the Muskegon River Watershed located in Michigan, USA. We also made these comparisons for several forecasted and one historical land use scenarios (over 140 years). Future land use scenarios to 2040 for forest regrowth, urbanization rates and stream setbacks were developed using the Land Transformation Model (LTM). Historical land use information, from 1900 at 5-year time step intervals, was created using a Backcast land use change model configured using artificial neural network and driven by agriculture and housing census information. We show that (1) controlling the rate of development is the most effective policy option to reduce runoff; (2) establishing setbacks along the mainstem are not as effective as controlling urban growth; (3) reforestation can abate some of the runoff effects from urban growth but not all; (4) land use patterns of the 1970s produced the least amount of runoff in most cases in the Muskegon River Watershed when compared to land use maps from 1900 to 2040; and, (5) future land use patterns here not always lead to increased (worse) runoff than the past. We found that while ten of the subwatersheds contained futures that were worse than any past land use configuration, twenty-five (62.5%) of the subwatersheds produced the greatest amount of runoff in 1900, shortly after the entire watershed was clear-cut. One third (14/40) of the subwatersheds contained the minimum amount of runoff in the 1960s and 1970s, a period when forest amounts were greatest and urban amounts relatively small.  相似文献   
247.
In order to compare treatability test results evaluating low-level mercury (Hg) removal from oil refinery wastewater, improvements in Hg analytical methods were conducted at two US EPA certified analytical labs. The revisions in the analytical protocols improved Hg recoveries and hence enabled more reliable data interpretation and comparison for the specific wastewater tested. Nevertheless, significant differences between results from the two laboratories were identified in a split-sample experiment.  相似文献   
248.
This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM2.5 measured in μg m?3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers’ waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM2.5 inside a bus shelter is 2.63 μg m?3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m?3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.  相似文献   
249.
250.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号