首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
安全科学   7篇
综合类   15篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2006年   2篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
11.
结合典型事故重点分析了过氧化二异丙苯生产工艺过程中发生热失控反应的原因,最后归纳提出了避免热失控反应的安全防控措施.  相似文献   
12.
基于102起水煤浆气化装置事故统计数据,从事故类型、事故发生位置、事故造成后果等方面进行分析,结果表明:设备事故和操作事故是水煤浆气化装置事故主要类型;发生事故较多的装置部位主要有高压煤浆泵、中控DSC、气化炉煤浆管线、气化炉烧嘴、氧气调节阀、棒磨机和洗涤塔等;事故造成的后果主要为气化炉停车和气化炉跳车,设备设施有缺陷、违反操作规程或劳动纪律以及误操作是导致事故的重要原因。结合事故原因,从落实企业安全生产主体责任、提升本质化安全水平、提高事故应急救援能力等方面提出了预防和控制水煤浆气化装置事故的对策建议。  相似文献   
13.
随着能源结构转型,新能源汽车行业高速发展,退役电池的处理问题不可忽视。梯次利用是资源利用率较高的退役电池再利用方式,但其安全问题备受争议。基于此,对比分析了退役电池材料回收和梯次利用两种再利用方式的利弊及技术发展方向,梳理了近年来国内退役电池梯次利用相关的国家、地方和团体标准,重点研究了标准中电池梯次利用安全方面的规定,分析了各标准中规定的电池安全测试项目和安全表现要求,探讨了对电池安全限制的发展方向,为退役电池梯次利用的安全发展提供理论和技术支撑。  相似文献   
14.
通过设计4种不同升温速率的差示扫描量热试验,考察了偶氮二异庚腈(ABVN)在恒定升温速率条件下的分解特性,确定了其放热温度、分解放热量等量热数据,并利用n级动力学方法和等转化率法对试验数据进行了分解反应动力学分析及动力学参数计算,验证了ABVN分解反应级数为一级,得到了分解反应活化能变化趋势、数值范围等结论.  相似文献   
15.
为研究常见化学品对偶氮二异丁腈(AIBN)热稳定性的影响,利用C600微量热仪对AIBN及AIBN与水、酸、氢氧化钠、氯化钠和铁等物质混合的热分解反应进行试验探究,根据试验数据得出相应的热力学和动力学参数,并利用傅里叶变换红外光谱仪对它们的分解产物进行分析。结果表明:AIBN本身的热稳定性较差;水、酸、氢氧化钠、氯化钠和铁等物质使AIBN的放热反应变剧烈,反应对温度的变化更敏感,反应速率常数增大;这些物质的加入不会改变AIBN的热分解反应产物。  相似文献   
16.
为了解决醋酸乙烯聚合反应失控所引起的超压问题,通过VSP2绝热量热仪研究了醋酸乙烯聚合反应的失控特性,并通过Leung's法对某醋酸乙烯聚合反应器的安全泄放面积进行了计算;然后,在其他条件不变的情况下,研究引发剂质量分数对失控特性和泄放面积的影响,结果表明,引发剂质量分数对反应总放热量的影响不大,体系绝热温升为105~115℃;但引发剂质量分数越大,失控反应的最大温升速率和最大压升速率越大。这是因为引发剂质量分数越大,在相同泄放压力和最大累积压力下,单位质量反应物的放热速率就越大,也就需要更大的泄放面积;最后,引入无量纲数W~*、G~*和A~*,拟合出它们与引发剂质量分数X*的关系式,结果表明,在研究范围内所需安全泄放面积随引发剂质量分数线性增大。  相似文献   
17.
18.
针对双叔丁基过氧化二异丙苯(BIPB)生产过程涉及到的物料、氧化反应、产物提浓过程存在安全隐患,通过实验研究得到BIPB的分解热为1 331.2 J/g,最高安全储存温度为81℃,热失控临界温度为111℃,提出了安全操作建议。  相似文献   
19.
为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数据,并用ASTM E 698法得到活化能数据,同时用C80、ARC和DSC的试验数据验证分解动力学数据的可靠性。最后利用无模式法的分解动力学数据进行BIPB绝热条件下和非绝热的2m3球形容器中的失控反应模拟,得到类似工艺条件下BIPB的安全控制温度。  相似文献   
20.
为了解甘氨酸甲酯重氮化反应的热危险性,利用全自动反应量热仪(RC1)研究甘氨酸甲酯重氮化过程的热效应,利用加速量热仪研究反应产物重氮乙酸甲酯的分解过程。利用实验结果计算得到绝热温度(ΔTad)、失控体系能达到的最高温度(MTSR)、技术最高温度(MTT)、失控反应最大反应速率到达时间(TMRad)以及最大反应速率到达时间为24 h的温度(TD24)等数据,通过风险矩阵评估法(方法 1)和失控过程温度参数评估法(方法 2)对该反应的热危险性进行了评价。结果表明,该重氮化反应危险性较低,但仍存在潜在的分解风险。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号