首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   26篇
  国内免费   39篇
安全科学   30篇
废物处理   26篇
环保管理   134篇
综合类   104篇
基础理论   142篇
环境理论   2篇
污染及防治   132篇
评价与监测   47篇
社会与环境   19篇
灾害及防治   6篇
  2023年   9篇
  2022年   5篇
  2021年   14篇
  2020年   11篇
  2019年   17篇
  2018年   21篇
  2017年   21篇
  2016年   39篇
  2015年   32篇
  2014年   28篇
  2013年   39篇
  2012年   21篇
  2011年   42篇
  2010年   37篇
  2009年   26篇
  2008年   42篇
  2007年   28篇
  2006年   21篇
  2005年   14篇
  2004年   17篇
  2003年   16篇
  2002年   20篇
  2001年   5篇
  2000年   6篇
  1998年   3篇
  1997年   11篇
  1996年   16篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1962年   2篇
  1960年   1篇
  1959年   1篇
  1957年   5篇
  1953年   1篇
  1950年   1篇
  1947年   1篇
  1925年   1篇
  1920年   5篇
  1917年   1篇
排序方式: 共有642条查询结果,搜索用时 15 毫秒
81.
We investigated the influence of elevated CO2 and O3 on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O3 decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO2 did not alter the parameters evaluated and both elevated CO2 and O3 showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO2 may have limited effects on N transformations in soybean agroecosystems. However, elevated O3 can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.  相似文献   
82.
Ng TY  Pais NM  Dhaliwal T  Wood CM 《Chemosphere》2012,87(11):1208-1214
We tested the use of whole-body and subcellular Cu residues (biologically-active (BAM) and inactive compartments (BIM)), of the oligochaete Lumbriculus variegatus to predict Cu toxicity in fresh water. The critical whole-body residue associated with 50% mortality (CBR50) was constant (38.2-55.6 μg g−1 fresh wt.) across water hardness (38-117 mg L−1 as CaCO3) and exposure times during the chronic exposure. The critical subcellular residue (CSR50) in metal-rich granules (part of BIM) associated with 50% mortality was approximately 5 μg g−1 fresh wt., indicating that Cu bioavailability is correlated with toxicity:subcellular residue is a better predictor of Cu toxicity than whole-body residue. There was a strong correlation between the whole-body residue of L. variegatus (biomonitor) and survival of Chironomus riparius (relatively sensitive species) in a hard water Cu co-exposure. The CBR50 in L. variegatus for predicting mortality of C. riparius was 29.1-45.7 μg g−1 fresh wt., which was consistent within the experimental period; therefore use of Cu residue in an accumulator species to predict bioavailability of Cu to a sensitive species is a promising approach.  相似文献   
83.
This study presents alternative methods for the processing of concrete waste. The mechanical stresses needed for the embrittlement of the mortar matrix and further selective crushing of concrete were generated by either electric impulses or microwaves heating. Tests were carried out on lab-made concrete samples representative of concrete waste from concrete mixer trucks and on concrete waste collected on a French demolition site. The results obtained so far show that both techniques can be used to weaken concrete samples and to enhance aggregate selective liberation (that is the production of cement paste-free aggregates) during crushing and grinding. Electric pulses treatment seems to appear more efficient, more robust and less energy consuming (1–3 kW h t?1) than microwave treatment (10–40 kW h t?1) but it can only be applied on samples in water leading to a major drawback for recycling aggregates or cement paste in the cement production process.  相似文献   
84.
Intensive land development as a result of the rapidly growing tourism industry in the “Riviera Maya” region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region.  相似文献   
85.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   
86.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   
87.
88.
Robinson LA  Frid CL 《Ambio》2008,37(5):362-371
The organisms living on and in the sea floor, the benthos, represent an important ecological group. Although some (shellfish) have an economic value, most do not, and so little long-term data are available. We have identified three sources of historic benthic data for the North Sea, a regional sea that has been subjected to multiple human impacts for at least several hundred years. Each dataset has its limitations, but by their use together some issues emerge. Wider community shifts were observed in the shorter term and a number of extirpations at the scale of the North Sea were seen over longer time scales. The extirpated taxa share a number of characteristics consistent with an effect of fisheries such as fragile morphology. We must concentrate now on furthering our understanding of the ecological significance of shifts in dominance of particular functional units and protecting those habitats and species most vulnerable to fisheries-driven extirpation.  相似文献   
89.
Kovács A  Mammen UC  Wernham CV 《Ambio》2008,37(6):408-412
Sixty-four percent of the 56 raptor and owl species that occur in Europe have an unfavorable conservation status. As well as requiring conservation measures in their own right, raptors and owls function as useful sentinels of wider environmental "health," because they are widespread top predators, relatively easy to monitor, and sensitive to environmental changes at a range of geographical scales. At a time of global acknowledgment of an increasing speed of biodiversity loss, and new, forward-looking and related European Union biodiversity policy, there is an urgent need to improve coordination at a pan-European scale of national initiatives that seek to monitor raptor populations. Here we describe current initiatives that make a contribution to this aim, particularly the current "MEROS" program, the results of a questionnaire survey on the current state of national raptor monitoring across 22 BirdLife Partners in Europe, the challenges faced by any enhanced pan-European monitoring scheme for raptors, and some suggested pathways for efficiently tapping expertise to contribute to such an initiative.  相似文献   
90.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号