首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1819篇
  免费   22篇
  国内免费   71篇
安全科学   80篇
废物处理   190篇
环保管理   211篇
综合类   175篇
基础理论   313篇
环境理论   2篇
污染及防治   681篇
评价与监测   169篇
社会与环境   74篇
灾害及防治   17篇
  2023年   20篇
  2022年   37篇
  2021年   40篇
  2020年   19篇
  2019年   32篇
  2018年   53篇
  2017年   61篇
  2016年   86篇
  2015年   48篇
  2014年   74篇
  2013年   150篇
  2012年   112篇
  2011年   131篇
  2010年   101篇
  2009年   114篇
  2008年   128篇
  2007年   114篇
  2006年   108篇
  2005年   96篇
  2004年   86篇
  2003年   60篇
  2002年   67篇
  2001年   48篇
  2000年   25篇
  1999年   14篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1965年   1篇
排序方式: 共有1912条查询结果,搜索用时 15 毫秒
61.
62.
To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.  相似文献   
63.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   
64.
Environmental Science and Pollution Research - Preschool children aged 3–6 years are vulnerable to exposed to particulate matter (“PM10” and “PM2.5”). It is required...  相似文献   
65.
Environmental Science and Pollution Research - Dissolved air flotation (DAF) is a widely used treatment process in drinking water and wastewater treatment plants despite high energy cost associated...  相似文献   
66.
This study aimed to investigate the wear of certain coated drills when drilling carbon fiber reinforced composites (CFRP). Three different drills were used in the drilling experiments: uncoated, diamond coated and AlTiN coated carbide (WC–Co) drills. The tool wear in CFRP machining was quite different from that in conventional metal machining. The primary wear type was a dulling or blunting of the cutting edge, which has been referred to as edge rounding wear or edge recession. In this paper, a hypothesis has been developed to explain the edge rounding wear in CFRP machining. Due to the fracture-based chip formation of CFRP, there is lack of the work material stagnation zone in front of the cutting edge, which normally prevents the edge wear in metal machining. Series of wear lead to rapid dulling of the cutting edge. The resistance to edge rounding wear on the coated as well as uncoated drills has been investigated. The diamond coating significantly reduces the edge rounding wear. However, AlTiN coated drills showed no visible improvement over the uncoated carbide drill, despite of their high hardness, thus not protecting the drill. The wear mechanisms of the uncoated carbide drill and coatings are discussed. It is believed that the 2-body and 3-body abrasive wear fail to explain the observed tool wear in CFRP drilling. However, the wear of the coatings and uncoated carbide substrate from tribo-meter tests correlated well with the tool wear in the CFRP drilling. Therefore, the tribo-meter test can be used to screen the prospective tool materials before carrying drilling experiment.  相似文献   
67.
RT-PCR, nucleotide sequencing, and phylogenetic analysis were performed for genotyping and molecular characterization of noroviruses isolated from Korean groundwater. Among 160 samples collected from 80 sites between 2008 and 2010, 14 samples (8.7?%) from 12 sites were positive for noroviruses (NoVs). The percentages of NoV-positive samples in 2008, 2009, and 2010 were 22.2, 3.2, and 0?%, respectively, representing a yearly decrease. GII-positive samples (n?=?9, 5.6?%) outnumbered GI-positive samples (n?=?5, 3.1?%). The genotypes of the GI NoVs were GI.2, GI.5, and GI.6, and the genotypes of the GII NoVs were all GII.4. One sample, HM623465, was very similar to CUK-3 and CBNU2 and two GII.4 sequences isolated from the stool of Korean gastroenteritis patients. A BLASTN search revealed several nucleotide sequences highly similar to those of NoVs isolated in this study. The original isolation sources for these similar NoVs were mostly stool (n?=?731, 80.0?%) and groundwater (n?=?135, 14.8?%), and all the countries from which they were isolated were almost in Asia (96.0?%); specifically, China (n?=?192, 21.0?%), Japan (n?=?383, 41.9?%), Korea (n?=?296, 32.4?%), and other Asian countries (n?=?6, 0.7?%). These results suggest that Korean groundwater might be contaminated with NoVs from the stool of infected patients and that these NoVs in turn cause new cases of gastroenteritis through a typical fecal-oral route with region-specific circulation. Therefore, it is important to properly treat sewage, which may include waterborne viruses and manage point sources in groundwater for national health and sanitation. In addition, continuous molecular surveillance remains important for understanding circulating NoVs.  相似文献   
68.
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.  相似文献   
69.
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH4+-N concentration decreased because of ammonification which was then followed by nitrification. The NO4+-N and NO4+-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased.  相似文献   
70.
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号