首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
  国内免费   11篇
安全科学   4篇
废物处理   11篇
环保管理   15篇
综合类   32篇
基础理论   10篇
污染及防治   50篇
评价与监测   16篇
社会与环境   4篇
灾害及防治   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   11篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   16篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
2.
Accurate spatial representation of climatic patterns is often a challenge in modeling biophysical processes at the watershed scale, especially where the representation of a spatial gradient in rainfall is not sufficiently captured by the number of weather stations. The spatial rainfall generator (SRGEN) is developed as an extension of the “weather generator” (WXGEN), a component of the Agricultural Policy/Environmental eXtender (APEX) model. SRGEN generates spatially distributed daily rainfall using monthly weather statistics available at multiple locations in a watershed. The spatial rainfall generator as incorporated in APEX is tested on the Cowhouse watershed (1,178 km2) in central Texas. The watershed presented a significant spatial rainfall gradient of 2.9 mm/km in the lateral (north‐south) directions based on four rainfall gages. A comparative analysis between SRGEN and WXGEN indicates that SRGEN performs well (PBIAS = 2.40%). Good results were obtained from APEX for streamflow (NSE = 0.99, PBIAS = 8.34%) and NO3‐N and soluble P loads (PBIAS ≈ 6.00% for each, respectively). However, APEX underpredicted sediment yield and organic N and P loads (PBIAS: 24.75‐27.90%) with SRGEN, although its uncertainty in output was lower than WXGEN results (PBIAS: ?13.02 to ?46.13%). The overall improvement achieved in rainfall generation by SRGEN is demonstrated to be effective in the improving model performance on flow and water quality output.  相似文献   
3.
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models—artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R~2), Nash–Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.  相似文献   
4.
5.
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of Soil and Water Assessment Tool (SWAT) modeling to channel dimensions to demonstrate how a conceptual representation of a watershed system affects streamflow and sediment modeling. Results showed the amount of uncertainty and equifinality strongly responded to channel dimensions. On the other hand, the model performance did not significantly vary with the changes in the channel representation due to the degree of freedom allowed by the conceptual nature of hydrologic modeling in the parameter calibration. Such findings demonstrated good modeling performance statistics do not necessarily mean small output uncertainty, and partial improvements in the watershed representation may neither increase modeling accuracy nor reduce uncertainty. We also showed the equifinality and uncertainty of hydrologic modeling are case‐dependent rather than specific to models or regions, suggesting great caution should be used when attempting to transfer uncertainty analysis results to other modeling studies, especially for ungauged watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
6.
As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.  相似文献   
7.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   
8.
A comparative study on Fe/Al, Fe/Al/Cu, and Fe/Al/Ni catalysts in high-temperature water–gas shift reaction (HT–WGS) using simulated waste-derived synthesis gas has been carried out. The metal oxide (Cu and Ni) and aluminum incorporated Fe catalysts were designed to get highly active HT–WGS catalysts. Despite the high CO concentration in the simulated waste-derived synthesis gas, Fe/Al/Cu catalyst exhibited the highest CO conversion (84 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h?1. The outstanding catalytic performance is mainly due to easier reducibility, the synergy effect of Cu and Al, and the stability of the magnetite.  相似文献   
9.
The direct injection of CO2 into the deep ocean is one of the ways for the mitigation of the global warming. There is, however, a concern about its environmental impact near the injection point. To minimize its biological impact, it is necessary to make CO2 disperse as fast as possible and it is thought that injection with pipes towed by moving-ships is effective for this purpose. Because the injection ships are planned to move in the site, the order of magnitude of which is 102 km, a mesoscale model is required to predict CO2 fate in seawater. At the same time, it is required to predict the concentration precisely near the injection points, which move with the ships in the mesoscale domain. In this study, a multi-scale ocean model was developed to analyze the dispersion of CO2 in the deep ocean: the model consists of a fixed mesoscale domain and 5 small-scale domains nesting in the mesoscale domain. Each small-scale domain involves 6 pipes and moves along with the trajectories of the injection ships. From the results of the present numerical simulation, the developed technique demonstrated its applicability as a tool to optimise the system to dilute CO2 below some criterion of biological impact.  相似文献   
10.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号