首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
  国内免费   2篇
安全科学   6篇
废物处理   14篇
环保管理   2篇
综合类   32篇
基础理论   14篇
污染及防治   27篇
评价与监测   2篇
社会与环境   6篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2014年   4篇
  2013年   4篇
  2012年   14篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
  1959年   1篇
  1954年   1篇
排序方式: 共有103条查询结果,搜索用时 125 毫秒
21.
22.
To investigate the effects of low (0.05 micromol/mol) and relatively low (0.10 micromol/mol) concentrations of ozone on photoassimilate partitioning, rice plants grown in a water culture were fed with (13)C-labelled carbon dioxide at the reproductive stage in an assimilation chamber with constant concentration of (12)CO(2) and (13)CO(2). Rice plants were exposed to ozone 4 weeks before and 3 weeks after (13)CO(2) feeding. The dry weight of whole plants decreased with increasing ozone concentration, whereas net photosynthetic rate (apparent CO(2) uptake per unit leaf area) was unaffected, compared with the control, at the time of (13)CO(2) feeding. Dry matter distribution into leaf sheaths and culms was reduced more than that into leaf blades by ozone exposure. Although panicle dry weight per plant was reduced by ozone, the percentage of panicle dry weight to the whole plant tended to increase considerably. Exposure to ozone accelerated translocation of (13)C from source leaves to other plant parts. Partitioning of (13)C to panicles and roots was higher under ozone treatment than in the control. Respiratory losses of fixed (13)C from plants tended to decrease under treatment with ozone. The increase in photoassimilate partitioning in panicles can be considered to be an acclimation response of rice plants to complete reproductive stage under the restricted biomass production caused by ozone.  相似文献   
23.
24.
A clean-up method for polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs) and diphenyl ethers (PBDEs) was modified using combinations of multi-layered silica gel, Florisil and active carbon columns. By using active carbon column chromatography in the final procedure, PBDEs were well separated from PBDD/Fs in an elution test with reference standards. We report the application of this method to sediment samples taken from industrialized areas in Japan. These sediments contained PBDEs ranging in concentration from 13 to 2394 pg/g, dry wt. PBDEs did not interfere with the quantification of PBDD/Fs. In addition, PBDEs found in the PBDD/F fraction did not interfere with the identification of PBDFs using the HRGC/HRMS separation method. Some 2,3,7,8-tetra- to hexabrominated dioxins and furans were also detected in the sediment samples.  相似文献   
25.
Pocillopora damicornis (Linnaeus), which is known to release planula larvae on a monthly cycle, was grown in full daytime solar irradiance, but with four treatments of night irradiance: (1) natural night irradiance, (2) shifted-phase (total darkness during nights of full moon with artificial irradiance at lunar intensity on nights of new moon), (3) constant full moon (full lunar irradiance every night), and (4) constant new moon (total darkness every night). The reproductive cycle of the corals held in the shifted-phase treatment moved out of synchrony with the cycle of corals exposed to a natural lunar cycle of night irradiance. Two previously described types of P. damicornis were tested. The Type Y normally start releasing larvae at full moon, with peak production at third quarter. In the shifted-phase treatment they began releasing planulae at new moon (artificial full moon), with peak production at first quarter. The Type B corals, that normally start releasing planulae at new moon with peak production at first quarter, began to release planulae at full moon (artificial new moon), with peak production at third quarter. Populations of corals grown either in the constant full moon or constant new moon treatment quickly lost synchronization of monthly larva production, although production of planulae continued. Thus spawning is synchronized by night irradiance.Contribution No. 702 of the Hawaii Institute of Marine Biology  相似文献   
26.
27.
28.
Lee LT  Ito S  Benten H  Ohkita H  Mori D 《Ambio》2012,41(Z2):135-137
A blend of regioregular poly(3-hexylthiophene) (P3HT) and poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2), which has the potential for polymer solar cells application, was prepared for current mode atomic force microscopy (C-AFM) measurements in this study. Phase-separated domains and the local electrical characteristics of P3HT/P(NDI2OD-T2) blends were investigated by the C-AFM.  相似文献   
29.
A recent development in analytical chemistry has enabled us to monitor systemic organophosphorus insecticide (OP) exposure at individual levels. At present, however, limited data are currently available on urinary OP metabolite levels worldwide. The purpose of this study was to assess urinary dialkylphosphate (DAP) concentrations in Japanese workers. Urine samples were collected in both summer and winter from 339 Japanese adults who worked as food distributors (FDs, n = 164), apple farmers (AFs, n = 147) and pest control operators (PCOs, n = 28). DAPs were measured by gas chromatography-mass spectrometry after derivatization with pentafluorobenzylbromide. Dimethylphosphate (DMP), diethylphosphate (DEP), dimethylthiophosphate (DMTP) and diethylthiophosphate (DETP) were detected in the urine of over 87% of the studied populations in both seasons. The geometric mean values of total DAPs (nmol g−1 creatinine), DMP, DMTP, DEP and DETP (μg g−1 creatinine) in summer and winter were 106.7 and 98.3, 7.0 and 3.8, 3.4 and 4.5, 0.8 and 1.5, and 0.3 and 0.2 for the FDs, 440.8 and 197.7, 33.1 and 10.8, 10.1 and 5.8, 4.2 and 4.7 and 1.6 and 0.8 for the AFs, and 473.4 and 284.6, 28.9 and 22.2, 17.6 and 4.6, 3.5 and 4.4, and 0.5 and 0.6 for the PCOs, respectively, thereby revealing significantly higher concentrations in AFs and PCOs groups than in the FDs in both seasons except for winter DMTP. These DAP concentrations were approximately the same or at lower levels compared with those reported in the previous literature. This is one of the first studies to demonstrate urinary DAP concentrations in Japanese adults.  相似文献   
30.
We investigated the respiratory uptake kinetics of polychlorinated biphenyls (PCBs), organohalogen pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE #47) in a marine benthic fish, Pseudopleuronectes yokohamae. The respiratory uptake efficiencies (EW) of the chemicals, of which there have been no reports for the majority of persistent organic pollutants (POPs), were obtained by measuring the respiratory uptake rate constants (k1) and the oxygen consumption rates of fish. Fish were exposed to water in which these chemicals were dissolved at environmentally relevant concentrations for 28 d, followed by 168 d of depuration in clean seawater. The k1 and EW values for 99 compounds were obtained, and they ranged from 2000 to 42 000 L kg-lipid−1 d−1 and from 0.060 to 1.3, respectively. The EW values of the chemicals, except for PAHs, tended to increase with increasing values of the log octanol–water partition coefficients (KOW) of the chemicals up to a log KOW of 5. For log KOW in the range 3–5, the EW values in this study were much lower than those in a published study (about one-third). As a result of analysis by a two-phase resistance model, the resistance of transport rates to the lipid phase in this study was lower than was the case in the published study. These findings indicate that the EW predicted by the published study for log KOW in the range 3–5 may differ among fish species and water temperature, and further study is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号