首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
废物处理   5篇
环保管理   1篇
综合类   3篇
基础理论   22篇
污染及防治   44篇
评价与监测   22篇
社会与环境   8篇
  2023年   2篇
  2022年   18篇
  2021年   9篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   1篇
  2014年   8篇
  2013年   14篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
排序方式: 共有105条查询结果,搜索用时 234 毫秒
71.
Atmospheric dry deposition to leaf surfaces at a rural site of India   总被引:1,自引:0,他引:1  
Dry deposition flux of major ions (Na+, K+, Ca2+, Mg2+, NH4+, F-, Cl-, NO3- and SO4(2-) to natural surfaces [guava (Psidium guyava) and peepal (Ficus religiosa) leaves] are determined at Rampur, a rural site of semi-arid region of India. Dry deposition flux is the highest for Ca2+ on guava leaves and for NH4+ on peepal leaves. Overall dry deposition flux is higher on guava leaves than of peepal leaves. The variation in deposition flux may be due to surface characteristics (surface roughness) and arrangement of leaves. Peepal leaves are arranged along the axis of the stem, whereas guava leaves are at right angles to the stem. The deposition flux of cations contributes 66% and 76% of dry deposition of all major ions on guava and peepal leaves, respectively as soil is major contributor towards dry deposition flux in tropical regions. ANOVA revealed no significant seasonal difference in deposition, although there is a trend for higher in winter. Deposition velocities of NH4+, NO3- and SO4(2-) are greater on guava leaves than peepal leaves, which can be attributed to the rougher surface of the guava leaf.  相似文献   
72.
Monitoring of 80 winter vegetable samples during 1997–1998 for pesticidal contamination was carried out on GC-ECD and GC-NPD systems with capillary columns following multiresidueanalytical technique. The tested samples were found 100%contaminated with low but measurable amounts of pesticideresidues. Among the four major chemical groups, residue levels oforganophosphorous insecticides were highest followed bycarbamates, synthetic pyrethroids and organochlorines. About 32%of the samples showed contamination with organophosphorous andcarbamate insecticides above their respective MRL values. On thebasis of observations made in these studies, it is suggested thatmore extensive monitoring studies covering all vegetable cropsfrom different agro-climatic regions of the state be carried outto know exact level of pesticidal contamination, which may serveas basis for future policy on chemical use.  相似文献   
73.
Environmental Chemistry Letters - Soil contamination by toxic metals is a major health issue that could be partly solved by using genetically-modified plants. For that, the recently developed...  相似文献   
74.
Here, we develop a mathematical model which investigates the impact of growing population and rampant mining on forest resources, present in an urban region. In order to demonstrate the effect imposed by the overgrowing population on the environment, population pressure is incorporated in the model, which augments mining activities in the given region. The obtained model is studied qualitatively using stability theory of differential equations, while it is quantitatively analyzed through numerical simulation. The results of the model reveal that a whopping increase in unchecked mining activities, induced through excessive population growth, leads to declination of forest resources in a region. Therefore, sustainable mining is suggested through control measures imposed by the government on mining activities.  相似文献   
75.
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature ?35 °C, pH 8, and initial cell concentration 7?×?107 cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.  相似文献   
76.
The present work includes a process for encapsulation by combining substantially simultaneously dry nonmetallic printed circuit boards (PCBs) powder and recycled high-density polyethylene (rHDPE) in an extruder to form a homogenous matrix. The extruded materials were then molded into standard tensile, flexural, and impact properties testing specimens. Nonmetallic PCB mainly consists of large amount of glass fiber–reinforced epoxy resin materials. Incorporation of 50 wt% nonmetallic PCB in rHDPE matrix had increased the flexural strength and modulus by 35% and 130%, respectively. Tensile strength reported to be constant without much improvement. However, the Young’s modulus has increased by 180%, with incorporation of 50 wt% nonmetallic PCB. The addition of 6 phr (parts per hundred) maleated polyethylene (MAPE) resulted in 2-fold increase in tensile and flexural strength. Regarding the leaching properties, Cu was identified as the metal that leached at the highest level from the raw nonmetallic PCB, at 59.09 mg/L. However, after the nonmetallic PCB was filled in rHDPE/PCB composites, the concentration of Cu was reduced far below the regulatory limit, to only 3 mg/L. Thermal properties of composites were studied, and it was found out that incorporation of nonmetallic PCB fillers in rHDPE resulted in low thermal conductivity, whereas mechanical strength of the composites showed maximum improvements at 220 °C. Overall, the encapsulation technique using nonmetallic PCB waste has formed a monolithic waste form that provides a barrier to the dispersion of wastes into the environment.
ImplicationsNonmetallic materials reclaimed from waste PCBs were used to analyze the chemical composition, and it was found that nonmetalllic PCBs mainly consist of glass fiber–reinforced epoxy resin materials. With such millions of glass fibers in nonmetallic PCBs, there are mass-excellent supporting bodies that enhance the mechanical properties of composites. In fact, utilization of nonmetallic PCB waste as filler in composites can dramatically restrain the solubility of heavy metals in leachate solution, thus making it safe to be used in practical products.  相似文献   
77.
Presence of pesticide residues was studied in rain water during 2002 employing multi residue analysis method by gas liquid chromatography equipped with ECD and NPD detectors and capillary columns. The presence of pesticide residues in surface aquatic system triggered the investigation of the presence of pesticides in rain water. A total of 13 pesticides were detected in rain water samples. Among the different groups of pesticides, organochlorines were present in the range of 0.041–7.060 ppb with maximum concentration of p,p’-DDT up to 7.060 μg l−1. Synthetic pyrethroids were present ranging from 0.100 to 1.000 μg l−1 and organophosphates in the range of 0.050–4.000 μg l−1 showing maximum contamination with cypermethrin (1.000 μg l−1) and monocrotophos (4.000 μg l−1) of the respective groups. Almost 80% samples showed the residues above MRL of 0.5 ppb fixed for multi residues and on the basis of single pesticide, 16–50% samples contained residues above the MRL value of 0.1 ppb.  相似文献   
78.
Status of insecticide contamination of soil and water in Haryana, India   总被引:2,自引:0,他引:2  
Twelve samples each of soil and ground water were collected from paddy-wheat, paddy-cotton, sugarcane fields and tube wells from same or near by fields around Hisar, Haryana, India during 2002–2003 to monitor pesticide residues. Residues were estimated by GC-ECD and GC-NPD systems equipped with capillary columns for organochlorine, synthetic pyrethroid and organophosphate insecticides. In soil, HCH (0.002–0.051 μg g−1), DDT (0.001–0.066 μg g−1), endosulfan (0.002–0.039 μg g−1) and chlordane (0.0002–0.019 μg g−1) among organochlorines, cypermethrin (0.001–0.035 μg g−1) and fenvalerate (0.001–0.022 μg g−1) among synthetic pyrethroids and chlorpyriphos (0.002–0.172 μg g−1), malathion (0.002–0.008 μg g−1), quinalphos (0.001–0.010 μg g−1) among organophosphates were detected. Dominant contaminants were DDT, cypermethrin and chlorpyriphos from the respective groups. In water samples, HCH, DDT, endosulfan and cypermethrin residues were observed frequently. Only chlorpyriphos among organophosphates was detected in 10 samples. On consideration of tube well water for drinking purpose, about 80% samples were found to contain residues above the regulatory limits.  相似文献   
79.
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern.  相似文献   
80.
An ecological time-series study is conducted to quantify health-effect coefficients associated with climate-sensitive variables namely temperature, rainfall, relative humidity, and wind speed and estimate environmental burden of diseases attributed to temperature as the main climatic variable together with climate change in Nepal. The study is based upon daily data of climate-sensitive variables and hospitalizations collected for 5 years between 2009 and 2014. Generalized linear model is used to estimate health-effect coefficients accounting distributed lag effects. Results show 3.08%, 10.14%, and 3.27% rise in water-borne, vector-borne, and renal disease hospitalizations, respectively, and 3.67% rise in water- and vector-borne disease deaths per 1 °C rise in average temperature. Similarly, 2.45% and 1.44% rise in heart disease hospitalization and all-cause mortality, respectively per 1 °C rise in absolute difference of average temperature with its overall average (20 °C). The computed attributable fractions are 0.3759, 0.6696, 0.2909, and 0.1024 for water-borne, vector-borne, renal, and heart disease hospitalizations, respectively, and 0.0607 and 0.4335 for all-cause mortality and disease-specific mortality of water- and vector-borne diseases, respectively. The percent change in attributable burdens due to climate change are found to be 4.32%, 4.64%, 7.20%, and ?2.29% for water-borne, vector-borne, renal, and heart disease hospitalizations, respectively, and ?1.39% and 6.55% for all-cause deaths and water-borne and vector-borne disease deaths, respectively. In conclusion, climate-sensitive variables have significant effects on many major health burdens in Nepal. In the context of changing climatic scenarios around the world including that of Nepal, such changes are bound to affect the health burden of Nepalese people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号