首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4931篇
  免费   232篇
  国内免费   1748篇
安全科学   339篇
废物处理   308篇
环保管理   360篇
综合类   2598篇
基础理论   807篇
污染及防治   1902篇
评价与监测   189篇
社会与环境   193篇
灾害及防治   215篇
  2024年   1篇
  2023年   85篇
  2022年   248篇
  2021年   195篇
  2020年   141篇
  2019年   135篇
  2018年   193篇
  2017年   229篇
  2016年   232篇
  2015年   271篇
  2014年   395篇
  2013年   520篇
  2012年   393篇
  2011年   449篇
  2010年   333篇
  2009年   303篇
  2008年   327篇
  2007年   262篇
  2006年   279篇
  2005年   203篇
  2004年   153篇
  2003年   162篇
  2002年   162篇
  2001年   149篇
  2000年   159篇
  1999年   149篇
  1998年   158篇
  1997年   121篇
  1996年   113篇
  1995年   88篇
  1994年   66篇
  1993年   58篇
  1992年   53篇
  1991年   27篇
  1990年   37篇
  1989年   12篇
  1988年   8篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有6911条查询结果,搜索用时 31 毫秒
21.
Environment, Development and Sustainability - The ecological compensation mechanism is regarded as the direction for the future management of the ecological environment of the river basin, which...  相似文献   
22.
为了有效处理低浓度抗生素残留废水,以水热法制备的BiOBr为载体,诺氟沙星(NOR)为模板,通过表面分子印迹法制备了BiOBr分子印迹材料(MIP).同时,采用SEM与XRD对制备的材料进行相分析及显微结构分析,并利用XPS、FTIR、BET和UV-Vis DRS对所合成材料的微观结构进行观察.最后,以诺氟沙星(NOR)为目标污染物,对MIP在暗反应下的吸附性能及300 W Xe灯照射下的光催化性能进行测定,并探讨pH、投加量、初始浓度、是否印迹处理对NOR去除的影响.实验结果表明,在pH为中性,MIP投加量为2.5 g·L-1的条件下,MIP对5 mg·L-1 NOR溶液的去除率达到96.2%,且对低浓度(1 mg·L-1)NOR溶液的去除率达到99%.综合表明,本文所制备的MIP适用于低浓度诺氟沙星废水的处理.  相似文献   
23.
杨正  李俊奇  王文亮  车伍  俱晨涛  赵杨 《环境工程》2020,38(4):10-15,38
海绵城市建设是在继承我国古代先贤智慧和参考国外经验,系统总结我国雨洪管理领域长期研究和实践经验的基础上,结合我国城市水系统实际问题提出的城市发展方式,其核心是构建基于绿灰结合的现代城市雨洪控制系统,通过"渗、滞、蓄、净、用、排"综合措施,实现"治涝"与"治黑"等多重目标。低影响开发是海绵城市建设的重要指导思想,也是海绵城市核心技术体系的重要组成部分。正确认识低影响开发与海绵城市的内涵与联系,对于进一步在全国范围内落实低影响开发建设模式,科学推进海绵城市建设具有重要意义。  相似文献   
24.
陈伟  赵杨  杨正  车伍  闫攀 《环境工程》2020,38(4):16-20
1968年美国开始推行洪涝保险计划,不断完善对洪涝风险的研究,并逐步形成了一套相对完善的洪泛区管理体系,而洪涝风险分析在洪涝保险、城市规划、土地开发、应急管理等领域广泛应用。纽约市在经历了多次飓风侵害,尤其是2012年飓风桑迪(Sandy)之后,意识到城市绿地在极端暴雨事件时对雨洪调蓄的重要作用,经过持续的研究实践,提出了基于洪涝风险分析的城市绿地规划设计要求。基于总结美国纽约市在飓风桑迪影响下对洪涝风险图的调整,及其对城市绿地规划设计相关要求,提出其对我国洪涝风险管控及城市绿地规划设计的启示。  相似文献   
25.
Waste cutting emulsions are difficult to treat efficiently owing to their complex composition and stable emulsified structure. As an important treatment method for emulsions, chemical demulsification is faced with challenges such as low flocs–water separation rates and high sludge production. Hence, in this study, Fe3O4 magnetic nanoparticles (MNPs) were used to enhance chemical demulsification performance for treating waste cutting emulsions under a magnetic field. The addition of MNPs significantly decreased the time required to attain sludge–water separation and sludge compression equilibrium, from 210 to 20 min. In addition, the volume percentage of sludge produced at the equilibrium state was reduced from 45% to 10%. This excellent flocculation–separation performance was stable over a pH range of 3–11. The magnetization of the flocculants and oil droplets to form a flocculant–MNP–oil droplet composite, and the magnetic transfer of the composite were two key processes that enhanced the separation of cutting emulsions. Specifically, the interactions among MNPs, flocculants, and oil droplets were important in the magnetization process, which was controlled by the structures and properties of the three components. Under the magnetic field, the magnetized flocculant–MNP–oil droplet composites were considerably accelerated and separated from water, and the sludge was simultaneously compressed. Thus, this study expands the applicability of magnetic separation techniques in the treatment of complex waste cutting emulsions.  相似文献   
26.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
27.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
28.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
29.
From 2000 to 2010 China experienced rapid economic development and urbanization. Many cities in economically developed areas have developed from a single-center status to polycentricity. In this study, we used exploratory spatial data analysis (ESDA) to identify the population centers, which identified 232 cities in China as having urban centers. COMP was used to represent urban agglomeration, and POLYD (representing how far is the city's sub-centers to the main center), POLYC (representing the number of a city's centers), and POLYP (representing the population distributed between the main center and the sub-centers) were used to indicate urban polycentricity. Night light data were used to determine the CO2 emissions from various cities in China. A mixed model was used to study the impact of urban aggregation and polycentric data on the CO2 emission efficiency in 2000 and 2010. The study found that cities with higher compactness were distributed in coastal areas, and the cities with higher multicentricity were distributed in the Yangtze River Delta and Shandong Province. The more compact the city was, the less conducive it was to improving CO2 emission efficiency. Polycentric development of the city was conducive to improving the CO2 emission efficiency, but the number of urban centers had no significant relationship with the CO2 emission efficiency. Our research showed that the compactness and multicentricity of the city had an impact on the CO2 emission efficiency and provided some planning suggestions for the low carbon development of the city.  相似文献   
30.
In order to reduce the pollutant emission and alleviate the pressure of petroleum resources shortage and greenhouse gas emission at the same time, the use of clean and renewable alternative fuel for marine engines is a promising option. In this study, a marine diesel engine, which was modified to run in diesel methanol compound combustion (DMCC) mode, was investigated. After the diesel injection parameters were calibrated, and combined with a sample after-treatment device DOC (diesel oxidation catalyst), the engine could meet the requirements of China II legislation. The overall MSP (methanol substitute percent) reached 54.1%. The value of each pollutant emission was much lower than that in China II emission legislation, and there was almost no methanol and formaldehyde emissions. When methanol was injected into the inlet manifold, the intake air temperature decreased a lot, as well as the exhaust gas temperature, which were beneficial to increase engine thermal efficiency and improve engine room environment. Compared with the engine running in pure diesel mode, when the engine ran in diesel/methanol dual fuel mode, the combustion phase was advanced, and the combustion duration became shorter. Therefore, the engine thermal efficiency increased, and fuel consumption decreased significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号