首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19574篇
  免费   4902篇
  国内免费   28472篇
安全科学   1815篇
废物处理   937篇
环保管理   1725篇
综合类   33815篇
基础理论   3722篇
环境理论   3篇
污染及防治   8013篇
评价与监测   1757篇
社会与环境   448篇
灾害及防治   713篇
  2024年   8篇
  2023年   203篇
  2022年   606篇
  2021年   483篇
  2020年   968篇
  2019年   2163篇
  2018年   2386篇
  2017年   2514篇
  2016年   2247篇
  2015年   2745篇
  2014年   3450篇
  2013年   3832篇
  2012年   3563篇
  2011年   3174篇
  2010年   2806篇
  2009年   2810篇
  2008年   2546篇
  2007年   2399篇
  2006年   1878篇
  2005年   1380篇
  2004年   1213篇
  2003年   1054篇
  2002年   869篇
  2001年   850篇
  2000年   970篇
  1999年   864篇
  1998年   683篇
  1997年   641篇
  1996年   660篇
  1995年   579篇
  1994年   385篇
  1993年   317篇
  1992年   348篇
  1991年   312篇
  1990年   259篇
  1989年   211篇
  1988年   150篇
  1987年   76篇
  1986年   79篇
  1985年   56篇
  1984年   55篇
  1983年   43篇
  1982年   46篇
  1981年   35篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1974年   2篇
  1972年   9篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
122.
To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta(PRD)region,integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17,2014.The concentrations and chemical compositions of PM_(2.5),aerosol optical properties and meteorological parameters were measured.The mean value of PM_(2.5) increased from less than 35(excellent) to 35-75 μg/m~3(good) and then to greater than 75 μg/m~3(pollution),corresponding to mean PM_(2.5) values of 24.9,51.2,and 93.3 μg/m~3,respectively.The aerosol scattering hygroscopic growth factor(f(RH = 80%)) values were 2.0,2.12,and 2.18 for the excellent,good,and pollution levels,respectively.The atmospheric extinction coefficient(σext)and the absorption coefficient of aerosols(σ_(ap)) increased,and the single scattering albedo(SSA)decreased from the excellent to the pollution levels.For different air mass sources,under excellent and good levels,the land air mass from northern Heshan had lower f(RH) and σ_(sp) values.In addition,the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.  相似文献   
123.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
124.
Waste cutting emulsions are difficult to treat efficiently owing to their complex composition and stable emulsified structure. As an important treatment method for emulsions, chemical demulsification is faced with challenges such as low flocs–water separation rates and high sludge production. Hence, in this study, Fe3O4 magnetic nanoparticles (MNPs) were used to enhance chemical demulsification performance for treating waste cutting emulsions under a magnetic field. The addition of MNPs significantly decreased the time required to attain sludge–water separation and sludge compression equilibrium, from 210 to 20 min. In addition, the volume percentage of sludge produced at the equilibrium state was reduced from 45% to 10%. This excellent flocculation–separation performance was stable over a pH range of 3–11. The magnetization of the flocculants and oil droplets to form a flocculant–MNP–oil droplet composite, and the magnetic transfer of the composite were two key processes that enhanced the separation of cutting emulsions. Specifically, the interactions among MNPs, flocculants, and oil droplets were important in the magnetization process, which was controlled by the structures and properties of the three components. Under the magnetic field, the magnetized flocculant–MNP–oil droplet composites were considerably accelerated and separated from water, and the sludge was simultaneously compressed. Thus, this study expands the applicability of magnetic separation techniques in the treatment of complex waste cutting emulsions.  相似文献   
125.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
126.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
127.
Five biochars derived from lotus seedpod(LSP) were applied to examine and compare the adsorption capacity of 17β-estradiol(E2) from aqueous solution.The effect of KOH activation and the order of activation steps on material properties were discussed.The effect of contact time,initial concentration,p H,ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process.Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr.The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength.E2 adsorption on LSP-derived biochar(BCs) was influenced little by humic acid,and slightly affected by the solution p H when its value ranged from 4.0 to 9.0,but considerably affected at p H 10.0.Low environmental temperature is favorable for E2 adsorption.Chemisorption,π–π interactions,monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms.Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material.Post-treated biochar exhibited better adsorption capacity for E2 than direct treated,pretreated,and raw LSP biochar.Pyrolyzed biochar at higher temperature improved E2 removal.The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution,with its advantages of good efficiency and simple technology.  相似文献   
128.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
129.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
130.
F-V_2 O_5-WO3/Ti02 catalysts were prepared by the impregnation method.As the content of F ions increased from 0.00 to 0.35 wt.%,the NO conversion of F-V_2 O_5-WO_3/TiO_2 catalysts initially increased and then decreased.The 0.2 F-V_2 O_5-WO_3/TiO_2 catalyst(0.2 wt.% F ion)exhibited the best denitration(De-NOx) performance,with more than 95% NO conversion in the temperature range 160-360℃,and 99.0% N2 selectivity between 110 and 280℃.The addition of an appropriate amount of F ions eroded the surface morphology of the catalyst and reduced its grain size,thus enhancing the NO conversion at low temperature as well as the sulfur and water resistance of the V_2 O_5-WO3/Ti02 catalyst.After selective catalytic reduction(SCR) reaction in a gas flow containing SO_2 and H_2 O,the number of NH3 adsorption sites,active component content,specific surface area and pore volume decreased to different degrees.Ammonium sulfate species deposited on the catalyst surface,which blocked part of the active sites and reduced the NO conversion performance of the catalyst.On-line thermal regeneration could not completely recover the catalyst activity,although it prolonged the cumulative life of the catalyst.In addition,a mechanism for the effects of S02 and H_2 O on catalyst NO conversion was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号