首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16975篇
  免费   5516篇
  国内免费   27382篇
安全科学   2371篇
废物处理   433篇
环保管理   1551篇
综合类   33638篇
基础理论   3287篇
污染及防治   5358篇
评价与监测   1759篇
社会与环境   691篇
灾害及防治   785篇
  2024年   70篇
  2023年   274篇
  2022年   712篇
  2021年   755篇
  2020年   1399篇
  2019年   2146篇
  2018年   2288篇
  2017年   2354篇
  2016年   2021篇
  2015年   2644篇
  2014年   3201篇
  2013年   3444篇
  2012年   3570篇
  2011年   3014篇
  2010年   2853篇
  2009年   2695篇
  2008年   2326篇
  2007年   2325篇
  2006年   1784篇
  2005年   1392篇
  2004年   1167篇
  2003年   849篇
  2002年   672篇
  2001年   742篇
  2000年   806篇
  1999年   653篇
  1998年   455篇
  1997年   426篇
  1996年   459篇
  1995年   419篇
  1994年   264篇
  1993年   196篇
  1992年   278篇
  1991年   263篇
  1990年   228篇
  1989年   198篇
  1988年   143篇
  1987年   70篇
  1986年   74篇
  1985年   53篇
  1984年   55篇
  1983年   40篇
  1982年   45篇
  1981年   34篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1972年   5篇
  1971年   5篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
31.
电化学氧化法具有稳定高效、操作灵活、集成度高等特点,在处理难降解有机废水领域具有独特优势.电化学废水处理过程通常受限于传质速率,而膜电极有望解决这一瓶颈问题.亚氧化钛膜电极(TiSO-ME)的化学结构与电化学性质结果显示,经过高温还原法制备的TiSO-ME电极主要由Ti4O7和少量Ti5O9组成,大孔体积占总孔体积的92.7%,平均孔径为0.508 μm.电化学测试结果表明,TiSO-ME具有良好的导电性、高析氧电位和电化学稳定性.过滤试验结果表明,在0.82×10-3~3.14×10-3 mL·cm-2·s-1范围内膜通量与传质系数成正比.在电流密度为8 mA·cm-2,膜通量为2.31×10-3 mL·cm-2·s-1的条件下,电解1.5 h即可有效处理实际印染工业废水,sCOD去除率高达96.07%,电流效率可达24.22%,电能消耗较不存在膜通量时降低了32.99%.TiSO-ME能够实现废水在膜孔结构内部的穿流式操作,有效克服旁流式操作传质受限的问题,在小规模分散式工业废水处理中有着重要的研究价值和发展潜力.  相似文献   
32.
针对河流水污染应急响应过程中污染源排放历史迟知、未知的问题,结合多种群遗传算法和自适应遗传算法,利用一维河流水质模型和水质监测数据,研究建立了基于改进遗传算法的河流水污染定量源反演方法,实现了对河流污染源排放历史的识别与重构.将该方法应用于美国特拉基河流的3个不同流量下的示踪剂实验中,对示踪剂排放历史进行定量源反演分析.结果表明:IGA算法对高、中、低不同流量下的3次示踪剂实验均可以很好的重构和识别示踪剂排放历史,对于实际河流水污染源反演分析的误差均在可接受范围内.IGA算法在河流水污染源反演分析中具有一定的可靠性和稳定性,可为河流水污染精准溯源与治理提供科学的技术支撑.  相似文献   
33.
摸查了农田灌溉系统水环境经农(夏)闲期降水等外部强干预调理后的环境污染物含量——该值理论上是环境自净作用之后的最不利值,对农田灌溉系统水环境进行水质评价,探究其对农田土壤质量的潜在污染风险.于2019年6月中旬—7月下旬(降雨集中期),分别在西北江三角洲城市(清远市、佛山市和江门市)实验基地周边筛选研究区,并在雨后对有覆水的水源区域、灌渠、蓄水池和田间水等采集上覆水,共采得水样27×2份,对其pH值、悬浮物(SS)、矿化度、总磷(TP)、氨氮(NH4+-N)、Cd、As、Pb、Cu和Zn的含量进行检测;对各研究区pH值、SS的成因和影响,矿化度的等级,重金属均值分布等进行分析;对全样品TP、NH4+-N、重金属含量进行Pearson相关性分析和描述性特征分析;通过单因子水质标识指数Pi和综合水质标识指数P分别对各采样点、各构成项目和各研究区进行水质评价.研究发现雨后农田灌溉系统水环境构成复杂,物质呈无显著性差异的迁移,灌溉沿程上覆水中大部分物质可能处于动态平衡,受局部环境影响变小,TP、NH4+-N和重金属等迁移物质主要还是灌溉水体中原有的,受外力驱动扰动后在水动力作用下可能以氮磷结合形态沿灌溉系统发生远距离迁移;使用河流水质标识指数法评价农田灌溉系统水环境,发现该法可以刻画局部灌溉的水质态势,对农田灌溉系统水环境的含量特征评价做出科学、合理的解释,也可以做出综合性定量评价.虽然灌溉水系统结构差异较大,但是从整体上可以初步得出农闲期西北江三角洲农田灌溉水的灌溉风险不高的结论,总体综合水质评价级别为Ⅰ类~Ⅱ类,达到水环境功能区的使用要求.  相似文献   
34.
利用ECMWF-ERA5和NCEP-FNL再分析资料作为中尺度气象模式WRF(The Weather Research and Forecasting)初始场,对四川盆地2018年1月一次大气污染过程气象要素进行了模拟,对比分析了气温、风速、风向、相对湿度、边界层高度、温廓线的模拟效果,并结合大气超级站观测数据对模拟结果进行评估.结果表明:两种资料均能较好地模拟出气象要素的变化情况,但由于两套资料时空分辨率、采用的模式、同化方案、数据来源和质量控制方案存在一定区别,导致各要素模拟效果并不一致.与NCEP-FNL相比,ECMWF-ERA5模拟的平均相对湿度(59.23%)与观测值差异更小,且均方根误差、偏差较小,分别为9.83%和-0.83%,但NCEP-FNL模拟的平均气温(8.99℃)更接近观测值,且偏差值较小,为-0.04℃.两组模拟结果均显示盆地内部为模拟区域的低风速区,相对湿度模拟值在60%以上,气温高于西部山地地区.NCEP-FNL模拟的盆地内部气温、相对湿度、风速小于ECMWF-ERA5模拟值,但边界层高度模拟值较大.ECMWF-ERA5模拟的逆温强度相比较小,且温度露点差较小.此次污染过程PM2.5和PM10日均浓度最大值分别为190.1 μg·m-3和261.0 μg·m-3,相对湿度增大引发的颗粒物吸湿增长是导致PM2.5和PM10质量浓度突增的主要原因.  相似文献   
35.
不同来源土样胶体对氯霉素吸附行为的影响   总被引:1,自引:0,他引:1  
选取不同来源沉积物或土壤样品(沉积物A1和A2,天然土壤B1和B2,市售营养土B3),采用切向超滤与多种纳米分析技术相结合的方法,分析了不同土样中胶体的理化特征及其对氯霉素(CAP)吸附行为的影响.荧光区域积分法结果显示,土样胶体的荧光组分以色氨酸类蛋白质、类富里酸和类腐殖酸为主,络氨酸类蛋白质和溶解性微生物代谢物质存在较少.吸附实验结果表明,B3胶体对CAP的吸附率最大(36.25%),在胶体浓缩液和超滤液中的分配比例最高(1.91),但其有机碳归一化结合系数最低(3.93).与天然土壤相比,河湖沉积物胶体的吸附率较高,但其与CAP的结合能力却较低.冗余分析结果表明,胶体对CAP的吸附主要与其芳香度、有色溶解性有机质丰度、溶解性有机碳浓度及分子量有关;此外,胶体的腐殖化程度、芳环上羧基、羰基等官能团的比重及荧光物质中溶解性微生物代谢产物和类腐殖酸对CAP的吸附行为也具有较大影响.  相似文献   
36.
利用南京与北京地区2014年5月1日—2019年10月31日的PM2.5监测数据、气溶胶光学厚度观测资料以及同期MICAPS地面气象要素的观测资料,对两地PM2.5浓度的变化规律及其与气溶胶光学厚度、气象要素的关系进行了分析和讨论,结果表明:南京与北京均呈现PM2.5浓度冬季显著高于夏季,AOD冬季小于夏季的特征;对比而言,北京PM2.5月均浓度高于南京地区;南京与北京的PM2.5浓度与AOD均为正相关关系,PM2.5浓度与AOD间相关性存在显著的季节差异,主要表现为夏季相关性大于冬季相关性;两地AOD与PM2.5浓度均为正相关关系,在同一AOD水平下,相对湿度越大,PM2.5浓度越大,气溶胶吸湿增长易造成污染物积累;南京PM2.5浓度与能见度的r为0.57,而北京的r为0.83,两地的PM2.5浓度与能见度的冬季相关性较夏季好,在高相对湿度下,同一PM2.5浓度水平时,南京能见度较北京好.  相似文献   
37.
外源8''-炔基脱落酸强化东南景天吸收重金属的研究   总被引:1,自引:0,他引:1  
龚定芳  赵萍萍  胡忆  孙杰 《环境科学学报》2020,40(12):4540-4547
为探究脱落酸类似物8''-炔基脱落酸[8''-(C2H)ABA]强化东南景天富集重金属的效应,通过水培的方法研究了外源8''-(C2H)ABA分别对Cd(20 mg·L-1)、Zn(160 mg·L-1)单一胁迫下东南景天Cd/Zn积累和生理特性的影响,以及初步探讨了8''-(C2H)ABA在植物重金属胁迫响应中的作用.实验结果表明:与天然ABA相比,外源8''-(C2H)ABA能达到与ABA类似的作用效果,且对Cd胁迫下东南景天促进效果好于Zn;在Cd胁迫下,与对照相比,外源8''-(C2H)ABA能显著增加东南景天根、叶中的Cd含量(44.2%、27.5%),以及光合色素(10.7%)和叶中过氧化物酶(SOD)活性(52.9%)、超氧化物歧化酶(POD)(24.7%)和过氧化氢酶(CAT)活性(27.9%)抗氧化酶活性,使可溶性糖(SS)(13%)和游离脯氨酸(Pro)(37.4%)含量增加,而叶中丙二醛(MDA)(40%)含量明显降低.上述结果表明,一定浓度的8''-(C2H)ABA可以提高东南景天抗氧化酶活性来增强其对重金属Cd的抗性及吸收和转运能力,在强化东南景天修复重金属污染方面具有应用潜力.  相似文献   
38.
以固定化微藻颗粒为原料,通过搭建流化床反应器强化微藻对氨氮(NH4+-N)的去除,设计了藻种、污水上升流速、光周期和光照强度四组单一变量实验,系统地研究了不同条件下微藻去除NH4+-N的能力.结果表明,当以固定化斜生栅藻为原料、污水上升流速为6.8m/h、光周期为8:16h和光照强度为4800Lux时,NH4+-N去除效果最优(96.7%).在最优操作条件下,探究了COD为200mg/L时微藻去除NH4+-N的潜力,结果表明,当NH4+-N初始浓度不高于50mg/L时,NH4+-N去除率高于95%.本实验建立了一套半连续微藻流化床实验方法,该方法显著减弱了微藻在生物同化过程中对有机碳源的依赖性,为低COD条件下微藻生物脱氮工艺的设计提供了技术参考和理论基础.  相似文献   
39.
为揭示地下水波动带中细菌群落结构特征及其与地下水环境相互作用关系,选取哈尔滨市第一水源地作为研究区,采集地下水样品以及波动带不同深度(0~5m非饱和带和6~50m饱和带)含水介质样品,分别用于水化学分析和16S rRNA细菌高通量测序,依托冗余分析定量表述地下水质参数与细菌群落相关性.水化学分析结果显示,研究区地下水主要污染物为Fe、Mn、NH4+和有机质,Fe、Mn超标与研究区特定地质背景有关,NH4+和有机质主要来源于人类活动.微生物分析结果显示,非饱和带和饱和带的细菌群落结构差异性显著,非饱和带细菌群落丰度和多样性显著高于饱和带,Proteobacteria、Bacteroidetes、Actinobacteria、Firmicutes和Acidobacteria为研究区优势门,在非饱和带和饱和带的累积相对丰度分别为82.89%和98.64%.冗余分析(RDA)结果显示,门水平上非饱和带中与水质演化强相关的细菌类群是Bacteroidetes、Proteobacteria、Actinobacteria、Verrucomicrobia,贡献率分别为15%、14.8%、8.9%和5.2%;饱和带中对地下水质演化起主要作用的类群为Bacteroidetes、Acidobacteria、Actinobacteria和Firmicutes,贡献率分别为38.4%、19.0%、10.8%和9.1%.属水平上非饱和带中的Pseudomonas和饱和带中的Flavobacterium对Fe、Mn、NH4+生物转化起主导作用.本研究为揭示地下水波动带中生物地球化学作用对地下水环境的影响提供了科学依据,对地下水污染修复具有重要的意义.  相似文献   
40.
模拟废印刷线路板(WPCB)的热拆解过程,分析热拆解过程中的挥发性有机物(VOCs)组分;利用真实溶剂似导体屏蔽(COSMO-RS)模型对浓度较高的污染物进行量子力学模拟,研究离子液体(ILs)组成单元对目标污染物溶解度的影响差异,分析溶解过程中主导分子间作用力类型,确定优选吸收剂;测定不同溶剂进行溶解性,验证模型适用性.结果表明:①乙酸乙酯和环戊酮是浓度较高的VOCs组分,在240和250℃时浓度分别为43.1,153mg/m3和105,252mg/m3,质量百分比总和分别为76.3%和67.3%.②高表面屏蔽电荷密度分布峰、长烷基链阴阳离子和亲电基团的存在可提高乙酸乙酯和环戊酮在ILs中的溶解度.双三氟甲磺酰基亚胺盐(NTf2-)类ILs是一类优良吸收剂.静电力和范德华力对溶解过程起主导作用.③COSMO-RS模型可定性和半定量用于预测乙酸乙酯和环戊酮的溶解度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号