首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2316篇
  免费   18篇
  国内免费   91篇
安全科学   114篇
废物处理   217篇
环保管理   287篇
综合类   299篇
基础理论   415篇
环境理论   1篇
污染及防治   802篇
评价与监测   200篇
社会与环境   75篇
灾害及防治   15篇
  2023年   13篇
  2022年   33篇
  2021年   38篇
  2020年   12篇
  2019年   41篇
  2018年   72篇
  2017年   59篇
  2016年   81篇
  2015年   57篇
  2014年   69篇
  2013年   185篇
  2012年   130篇
  2011年   148篇
  2010年   98篇
  2009年   133篇
  2008年   144篇
  2007年   151篇
  2006年   132篇
  2005年   118篇
  2004年   107篇
  2003年   99篇
  2002年   90篇
  2001年   62篇
  2000年   38篇
  1999年   24篇
  1998年   21篇
  1997年   23篇
  1996年   16篇
  1995年   19篇
  1994年   18篇
  1993年   19篇
  1992年   11篇
  1991年   19篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2425条查询结果,搜索用时 171 毫秒
41.
A disturbing trend among governmental agencies is the remediation of so‐called “nonhazardous” contaminated sediments/soils by deposition in minimum‐design Subtitle D municipal solid waste (MSW) landfills or landfills with equivalent design. This is done despite the fact that, in terms of protection of public health and environmental quality, the designation “nonhazardous” is misleading at best, and the fact that minimum‐design Subtitle D landfills as being allowed will not ensure protection of groundwater quality for as long as the buried wastes remain a threat. Although acknowledged in the regulatory documentation and exposed in the writings of a few in the scientific/engineering community, the environmental and public health issues that will inevitably be faced at minimum‐design Subtitle D landfills are underplayed, and even misrepresented, to the public. Discussion of relevant issues, as well as remarkable omissions, characterized the October 2004 United States Army Corps of Engineers (US ACE)/United States Environmental Protection Agency (US EPA)/Sediment Management Work Group (SMWG) conference,” Addressing Uncertainty and Managing Risk at Contaminated Sediment Sites.” This article addresses many of those neglected issues. © 2005 Wiley Periodicals, Inc.  相似文献   
42.
Given restrictions on sulfur dioxide emissions, a feasible long-run response could involve either an investment in improving boiler fuel-efficiency or a shift to a production process that is effective in removing sulfur dioxide. To allow for the possibility of substitution between sulfur and productive capital, we measure the shadow price of sulfur dioxide as the opportunity cost of lowering sulfur emissions in terms of forgone capital. The input distance function is estimated with data from 51 coal-fired US power units operating between 1977 and 1986. The indirect Morishima elasticities of substitution indicate that the substitutability of capital for sulfur is relatively high. The overall weighted average estimate of the shadow price of sulfur is -0.076 dollars per pound in constant 1976 dollars.  相似文献   
43.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   
44.
45.
Introductions of non-native predators often reduce biodiversity and affect natural predator–prey relationships and may increase the abundance of potential disease vectors (e.g., mosquitoes) indirectly through competition or predation cascades. The Santa Monica Mountains (California, U.S.A.), situated in a global biodiversity hotspot, is an area of conservation concern due to climate change, urbanization, and the introduction of non-native species. We examined the effect of non-native crayfish (Procambarus clarkii) on an existing native predator, dragonfly nymphs (Aeshna sp.), and their mosquito larvae (Anopheles sp.) prey. We used laboratory experiments to compare the predation efficiency of both predators, separately and together, and field data on counts of dragonfly nymphs and mosquito larvae sampled from 13 local streams. We predicted a lower predation efficiency of crayfish compared with native dragonfly nymphs and a reduced predation efficiency of dragonfly nymphs in the presence of crayfish. Dragonfly nymphs were an order of magnitude more efficient predators than crayfish, and dragonfly nymph predation efficiency was reduced in the presence of crayfish. Field count data showed that populations of dragonfly nymphs and mosquito larvae were strongly correlated with crayfish presence in streams, such that sites with crayfish tended to have fewer dragonfly nymphs and more mosquito larvae. Under natural conditions, it is likely that crayfish reduce the abundance of dragonfly nymphs and their predation efficiency and thereby, directly and indirectly, lead to higher mosquito populations and a loss of ecosystem services related to disease vector control.  相似文献   
46.
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.  相似文献   
47.
The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10–5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10–5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass.  相似文献   
48.
This study was aimed to investigate the biodegradation characteristics of organic matters in swine carcasses. The lysimeters were simulated with different initial operating conditions: 30 % volumetric moisture content and no sludge addition for lysimeter A (control), 30 % volumetric moisture content and anaerobic sludge addition for lysimeter B, and 40 % volumetric moisture content and anaerobic sludge addition for lysimeter C. The degradation efficiency (18.4 %) of lysimeter B was higher than that (15.2 %) of lysimeter A due to anaerobic sludge addition. Lysimeter B showed higher CH4 yield (15.6 L/kg VS) and CH4 production rate (0.41 L/kg VS days) compared to lysimeter A by 31 % and 14 %, respectively. In addition, the degradation efficiency improved from 18.4 % (lysimeter B) to 26.3 % (lysimeter C) by increasing volumetric moisture content. The CH4 yield (22.9 L/kg VS) and CH4 production rate (0.68 L/kg VS days) of lysimeter C were higher than those of lysimeter B, respectively. Total organic carbon (TOC) removed in lysimeter C was converted to leachate (20.3 %) and gas (6.0 %), whose values were higher than those of lysimeter A and B. These results demonstrated that the proper control of initial operating conditions could accelerate the anaerobic degradation of organic matters in swine carcasses.  相似文献   
49.
Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml?1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml?1) (p < 0.001). μ ranged up to 0.98 day?1 (0.51 ± 0.29 day?1), while g ranged from 0.02 to 0.31 day?1 (0.15 ± 0.07 day?1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day?1 (0.29–0.82 day?1) and 0.31 ± 0.14 day?1 (0.13–0.63 day?1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi ? 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.  相似文献   
50.
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts—species that carry infection while maintaining high abundance but are rarely killed by disease—can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号