首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   10篇
  国内免费   7篇
安全科学   16篇
废物处理   10篇
环保管理   94篇
综合类   66篇
基础理论   138篇
环境理论   12篇
污染及防治   146篇
评价与监测   39篇
社会与环境   39篇
  2023年   4篇
  2022年   10篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   24篇
  2017年   22篇
  2016年   22篇
  2015年   17篇
  2014年   21篇
  2013年   44篇
  2012年   29篇
  2011年   46篇
  2010年   24篇
  2009年   24篇
  2008年   35篇
  2007年   27篇
  2006年   36篇
  2005年   16篇
  2004年   12篇
  2003年   29篇
  2002年   18篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   8篇
  1997年   10篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有560条查询结果,搜索用时 125 毫秒
131.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   
132.
Regional Environmental Change - Despite internationally recognized definitions, there remains debate over what constitutes ‘actual’ degradation in various agro-pastoral contexts. This...  相似文献   
133.
When annual average PM2.5 (fine particulate matter sized 2.5 microns and less) data for 2005 became available in April 2006 and the 3-yr average PM2.5 concentration in an area just north of the Houston Ship Channel reached 15.0 µg/m3, the Texas Commission on Environmental Quality (TCEQ) initiated daily collection of quartz fiber as well as Teflon PM2.5 filter samples for chemical speciation analysis. The purpose of the chemical speciation analysis was to use the speciation data, together with meteorological data and hourly TEOM (tapered element oscillating microbalance) PM2.5 mass data, to identify the causes of the high PM2.5 concentrations affecting the monitoring site and the neighborhood. The ultimate purpose was to target emission reduction efforts to sources contributing to the high measured PM2.5 concentrations. After a year of data collection, it was recognized that a specific source, unpaved driveways and loading areas along the Ship Channel and dirt tracked onto Clinton Drive, the main artery running east-west north of the Ship Channel, were the primary cause for the Clinton Drive site's measuring PM2.5 concentrations significantly higher than other sites in Houston. The source characterization and remediation steps that have led to sustained reduced concentrations are described in this paper.

Implications: With PM2.5 exceedances it can be essential to have or develop chemical speciation data as part of the process of identifying the source types causing exceedances of an annual standard. Positive matrix factorization (PMF) analysis proved to be a powerful tool that identified the two locally emitted species contributing to exceedances, which did not occur at other sites in the region. They were calcium sulfate (gypsum), an industrial by-product, and soil minerals. Other data analysis approaches were necessary to distinguish North African dust events, which PMF failed to identify.  相似文献   
134.
Maputaland in northern KwaZulu-Natal is a biodiversity hotspot and host to a number of ecologically important systems, including Lake Sibaya, southern Africa’s largest natural freshwater lake. The region is malaria endemic and this study reports the presence of DDT and its metabolites in the sediments of Lake Sibaya that have resulted from the widespread and continued use of DDT in the region. DDT residues (p,p′-DDT, p,p′-DDD, and p,p′-DDE) were detected at all 11 sites sampled, with total concentrations ranging from 0.8 to 123 ng g−1. Total DDT concentrations at Lake Sibaya represent some of the highest levels reported in South Africa, with most samples exceeding sediment quality guideline values. The findings from this study raise concerns and indicate that urgent further work is needed to investigate the potential for bioaccumulation, which could adversely affect breeding fish, bird, and crocodile populations in the region. While this study represents the first report on DDT contamination in Lake Sibaya, results have important implications for a number of other aquatic ecosystems within the Maputaland ecoregion, as well as the many local people who depend on them.  相似文献   
135.
Climatic drivers of potential hazards in Mediterranean coasts   总被引:1,自引:1,他引:0  
This paper studies climatic drivers (air and water temperature, precipitation rates, river discharge, sea level and storm patterns) in four Mediterranean regions: the Catalan-Valencia Coast (Spain), the Oran (Algeria) and Gabès (Tunisia) Gulfs and the western Nile Delta (Egypt). The paper also considers the potential hazards that these drivers can induce. It first analyses climatic trends in the drivers, taking into account the available time series of recorded and simulated meteo-oceanographic data from different sources. Next, it presents the general framework to assess biogeophysical hazards (flooding, erosion, droughts and water quality), followed by a simple and yet robust evaluation of those hazards for the four studied coastal sites. Assuming climate change projections under different scenarios and considering the observed trends in drivers, the resulting erosion rates due to sea-level rise and wave storm effects have been estimated. The Nile and Ebro Deltas, together with the Oran Gulf, are more vulnerable than the Gulfs of Valencia and Gabès. Regarding water quality in terms of (a) precipitation and dissolved oxygen in the water column and (b) sea surface temperature, the results show that the most vulnerable zones for the projected conditions (a) are the Gulfs of Oran, Valencia and Gabès, while the Nile Delta is the region where the decrease in water quality will be less pronounced. For the projected conditions (b), the most vulnerable zone is the Ebro Delta, while the impact in the other three cases will be smaller and of comparable magnitude. Finally, the overall future impact of these hazards (associated to climatic change) in the four sites is discussed in comparative terms, deriving some conclusions.  相似文献   
136.
We update the Wigington et al. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often in situations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.  相似文献   
137.
Although the terrestrial carbon budget is of key importance for atmospheric CO2 concentrations, little is known on the effects of management and natural disturbances on historical carbon stocks at the regional scale. We reconstruct the dynamics of vegetation carbon stocks and flows in forests across the past 100 years for a valley in the eastern Swiss Prealps using quantitative and qualitative information from forest management plans. The excellent quality of the historical information makes it possible to link dynamics in growing stocks with high-resolution time series for natural and anthropogenic disturbances. The results of the historical reconstruction are compared with modelled potential natural vegetation. Forest carbon stock at the beginning of the twentieth century was substantially reduced compared to natural conditions as a result of large scale clearcutting lasting until the late nineteenth century. Recovery of the forests from this unsustainable exploitation and systematic forest management were the main drivers of a strong carbon accumulation during almost the entire twentieth century. In the 1990s two major storm events and subsequent bark beetle infestations significantly reduced stocks back to the levels of the mid-twentieth century. The future potential for further carbon accumulation was found to be strongly limited, as the potential for further forest expansion in this valley is low and forest properties seem to approach equilibrium with the natural disturbance regime. We conclude that consistent long-term observations of carbon stocks and their changes provide rich information on the historical range of variability of forest ecosystems. Such historical information improves our ability to assess future changes in carbon stocks. Further, the information is vital for better parameterization and initialization of dynamic regional scale vegetation models and it provides important background for appropriate management decisions.  相似文献   
138.
Assessing the health risk from lead (Pb) in potable water requires accurate quantification of the Pb concentration. Under worst-case scenarios of highly contaminated water samples, representative of public health concerns, up to 71–98 % of the total Pb was not quantified if water samples were not mixed thoroughly after standard preservation (i.e., addition of 0.15 % (v/v) HNO3). Thorough mixing after standard preservation improved recovery in all samples, but 35–81 % of the total Pb was still un-quantified in some samples. Transfer of samples from one bottle to another also created high errors (40–100 % of the total Pb was un-quantified in transferred samples). Although the United States Environmental Protection Agency’s standard protocol avoids most of these errors, certain methods considered EPA-equivalent allow these errors for regulatory compliance sampling. Moreover, routine monitoring for assessment of human Pb exposure in the USA has no standardized protocols for water sample handling and pre-treatment. Overall, while there is no reason to believe that sample handling and pre-treatment dramatically skew regulatory compliance with the US Pb action level, slight variations from one approved protocol to another may cause Pb-in-water health risks to be significantly underestimated, especially for unusual situations of “worst case” individual exposure to highly contaminated water.  相似文献   
139.
This paper presents first results of Phyt’Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d’Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km2). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt’Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L−1. They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt’Eaux Cités action.  相似文献   
140.
ABSTRACT

Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. “Non-ideal flow” indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor.

The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号