首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   11篇
  国内免费   1篇
安全科学   56篇
废物处理   8篇
环保管理   30篇
综合类   15篇
基础理论   46篇
污染及防治   22篇
评价与监测   13篇
社会与环境   4篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   10篇
  2014年   3篇
  2013年   22篇
  2012年   15篇
  2011年   16篇
  2010年   19篇
  2009年   9篇
  2008年   6篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   6篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有194条查询结果,搜索用时 265 毫秒
11.
ABSTRACT

Data from the 1990 San Joaquin Valley Air Quality Study/ Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/ AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., downwind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   
12.
Hydroxylamine, NH2OH, thermal decomposition has been responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting the rate of its decomposition are not understood. In this work, isoperibolic calorimetric measurements were performed in a metal reactor, in the temperature range 130–150 °C, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The calorimetric measurements were performed in order to assess the effects that NH2OH concentration, temperature and reactor venting has on NH2OH rate of decomposition. The measurements showed that increased concentration or temperature, results in faster reactions and probably higher pressure generation per mass of reactant, with concentration having a more pronounced effect. However, when both factors work synergistically the result is dramatically worse in terms of reaction rate. The pressure generation is also different, thus indicating that different reaction pathways predominate each time. Venting the produced gases in stages resulted in the highest mass loss of the solution.  相似文献   
13.
14.
The siting of facilities with undesirable environmental characteristics often leads to public conflict. Efforts to resolve the conflict and make siting decisions frequently exacerbate the problem. Environmental mediation, the process of negotiating an agreeable settlement, is an accepted approach to resolving conflict. This paper explores the use of incentive systems as a means of achieving equity in environmental mediation. Obnoxious and noxious characteristics of facilities are discussed as the basis of conflicts. Four types of incentives—mitigation, compensation, reward, and participation—are discussed. The paper concludes with a discussion of the utility and application of incentives for solving environmental conflicts.  相似文献   
15.
CO2 storage capacity estimation: Methodology and gaps   总被引:3,自引:0,他引:3  
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales—in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers.  相似文献   
16.
17.
Urban, suburban and rural background air samples were collected in southern Ghana in 2008 employing polyurethane foam disc passive air samplers (PAS). PAS were analysed for organochlorine pesticides (OCPs), namely hexachlorocyclohexanes (α-, β-, γ- and δ-hexachlorocyclohexane), dichlorodiphenyltrichloroethane including metabolites (o,p'- and p,p'-DDT, DDE and DDD), hexachlorobenzene, pentachlorobenzene, aldrin, dieldrin, endrins (endrin, endrin aldehyde and endrin ketone), isodrin, heptachlors (heptachlor, heptachlor epoxide A and heptachlor epoxide B), chlordanes (α-, β-chlordane, oxychlordane and trans-nonachlor), endosulfans (α- and β-endosulfan and endosulfan sulphate), methoxychlor and mirex using a gas chromatograph coupled to a mass spectrometer. The levels of OCPs ranged for the individual pesticides from below limit of quantification to 750 pg m(-3) (for α-endosulfan), and current agricultural application seemed to be the main primary source of most abundant pesticides. Re-volatilization of previously used pesticides from contaminated soils could not be ruled out either as potential secondary source of contamination, especially in warm and dry seasons and periods of intensive agricultural activities. Higher atmospheric concentrations were observed in November and December during the dry season compared to lower concentrations observed in June, July and August when the country experiences heavy rains. The highest seasonal variation was observed for currently used pesticides as α-endosulfan. A p,p'-DDT/p,p'-DDE ratio suggested recent inputs of fresh technical DDT.  相似文献   
18.
19.
Objective: This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes.

Method: Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing “replay” of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking.

Results: It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn–opposite crashes.

Conclusions: These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号