首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   1篇
  国内免费   1篇
安全科学   4篇
废物处理   10篇
环保管理   24篇
综合类   10篇
基础理论   59篇
环境理论   1篇
污染及防治   29篇
评价与监测   12篇
社会与环境   5篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   16篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   11篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1996年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1985年   4篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
81.
The EPA lead model predicts mean blood lead levels and risk of elevated blood lead levels in children based on lead uptake from multiple sources. In the latest model versions, environmental data from individual homes within a community can be used to predict the overall blood lead distribution and percent risk of exceeding a specific blood lead level (i.e. 10 g dl–1). Recent criteria used by the EPA to evaluate this information include no more than 5% of houses with a greater than 5% lead risk, and a community weighted-average risk below 5%. Environmental (primarily soil) and blood lead data from a residential community near a smelter were used to illustrate recent uses of the model. Scheduled remediation in the community will remove soil for approximately 60% of the houses (i.e. those with lead levels > 1000 mg kg–1). After remediation, the model results indicate a relatively low community risk (0.5–1.9%), although the percentage of houses with lead risks above 5% ranged from 3 to as high as 13%, depending on the variation in blood lead and assuming the model's 7 g dl–1 increase in blood lead with each 1000 mg kg–1 increase in soil lead level. A comparison of the limited blood lead data with soil lead levels below 1000 mg kg–1, however, indicated no apparent relationship. Given these uncertainties, less invasive actions than additional soil removal (e.g. exposure intervention, monitoring conditions, and follow-up as necessary) may be appropriate under the new EPA guidance for lead in soil.  相似文献   
82.
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO(3(s))) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO(3(s)) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.  相似文献   
83.
Controlled releases of NH4-N and conservative tracers (Br- and Cl-) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d(-1) and retention of NH4-N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH4-N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH4-N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH4-N retention if plant biomass is reduced because of reduced contact times between NH4-N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity.  相似文献   
84.
Three methods (membrane filtration, multiple tube fermentation, and chromogenic substrate technology kits manufactured by IDEXX Laboratories, Inc.) are routinely used to measure indicator bacteria for beach water quality. To assess comparability of these methods, quantify within-laboratory variability for each method, and place that variability into context of variability among laboratories using the same method, 22 southern California laboratories participated in a series of intercalibration exercises. Each laboratory processed three to five replicates from thirteen samples, with total coliforms, fecal coliforms or enterococci measured depending on the sample. Results were generally comparable among methods, though membrane filtration appeared to underestimate the other two methods for fecal coliforms, possibly due to clumping. Variability was greatest for the multiple tube fermentation method. For all three methods, within laboratory variability was greater than among laboratories variability.  相似文献   
85.
Fish and shellfish are exposed to a wide range of polycyclic aromatic hydrocarbons (PAH) following oil spills at sea, and can become contaminated as a result. Finfish have a more effective mixed-function oxidase enzyme system than shellfish, and are therefore able to metabolise and excrete PAH more effectively than the invertebrates. Thus, contamination by high-molecular weight PAH, including those with carcinogenic potential and so of concern with regard to human consumers, is therefore usually observed in shellfish, and particularly in bivalve molluscs. Oil spills are not the sole source of PAH, however, as parent compounds are also generated by a wide range of combustion processes. In this paper, consideration is given to monitoring data gathered following recent oil spills (both of crude oil and diesel fuel), alongside data from other studies. These include studies conducted around a former gasworks site and downstream of an aluminium smelter in the UK, and from mussel monitoring studies undertaken in the UK and the USA (including the Exxon Valdez oil spill and the National Status and Trends programme), and in other countries in Europe. For comparative purposes the PAH concentrations are summed and also expressed as benzo[a]pyrene equivalents, their relative concentrations being weighted in relation to the carcinogenic potential of individual PAH compounds using toxic equivalency factors (TEF). Our aim was to assess the utility of this approach in fishery resource monitoring and control following oil spills. Certainly this approach seems useful from the data assessed in this study. and the relative ranking of the various studies seems to reflect the relative degree of concern for human consumers due to the differing contamination sources. As a simple tool for control purposes it is equally applicable to PAH derived from oil spills, and from industrial and combustion sources.  相似文献   
86.
Synthetic biology has the potential for a broad array of applications. However, realization of this potential is challenged by the paucity of relevant data for conventional risk assessment protocols, a limitation due to to the relative nascence of the field, as well as the poorly characterized and prioritized hazard, exposure, and dose–response considerations associated with the development and use of synthetic biology-derived organisms. Where quantitative risk assessment approaches are necessarily to fulfill regulatory requirements for review of products containing genetically modified organisms, this paper reviews one potential avenue for early-stage quantitative risk assessment for biosafety considerations of synthetic biology organism deployment into the environment. Building from discussion from a March 2018 US Army Engineer Research and Development Center workshop on developing such quantitative risk assessment for synthetic biology, this paper reviews the findings and discussion of workshop participants. This paper concludes that, while synthetic biology risk assessment and governance will continue to refine and develop in the coming years, a quantitative framework that builds from existing practice is one potentially beneficial option for risk assessors that must contend with the technology’s limited hazard characterization or exposure assessment considerations in the near term.  相似文献   
87.
ABSTRACT: Pond‐cypress, a deciduous conifer, is a dominant canopy species in depressional wetlands of the southeastern Coastal Plain (SCP). Extensive premature decline and death of pond‐cypress trees in central Florida have been attributed to hydroperiod alterations due to excessive withdrawals of ground water from the Floridan aquifer. One factor identified in the decline process is basal decay, which may be related to the presence of Botryosphaeria rhodina and Fusarium species (nonaggressive, facultative fungal pathogens). These fungi have been cultured from sapwood tissue of declining pond‐cypress associated with ground water mining, but not from pond‐cypress away from ground water mimng areas. In this experiment, differences in soluble (nonstructural) carbohydrate composition of branch tips were evaluated for one‐and two‐year old, nursery‐grown (unsheltered) pond‐cypress, following a year of growth under treatment conditions (control, fungal inoculation, water stress, and fungal inoculation plus water stress) in a growth chamber. Results from two methods of wet chemical analysis were compared (trimethylsilyl methylglycoside‐Method A, and alditol acetate ‐ Method B). Three pentoses (arabinose, rhamnose, and xylose) and three hexoses (galactose, glucose, and mannose) were identified in branch tips from both age classes. A fourth hexose (fucose) also was identified in samples from the younger trees. The acidic sugar, galacturonic acid, was identified in both age classes using Method A. Results suggest that prolonged water stress is correlated with greater relative concentrations of the neutral soluble sugars rhamnose (P = 0.02), xylose (P = 0.02), and galactose (P = 0.02), in addition to the acidic sugar galacturonic acid (P = 0.01), for Method A, and arabinose (P = 0.02) for Method B. These results also suggest that in the absence of water stress, the fungal pathogen B. rhodina does not penetrate to the sapwood of the trees, and that inoculation with this fungal pathogen is not correlated with differences in relative concentrations of nonstructural, soluble carbohydrates, based on Method A analysis. Empirical evidence suggests that pond‐cypress trees in depressional wetlands respond similarly to anthropogenic perturbations of ground water, but not to natural periods of drought in the absence of such perturbations. Therefore, pond‐cypress appear to be integrators of groundwater perturbations. Greater concentrations of the soluble sugars identified in this study in pond‐cypress branch tips may be hydroecological indicators of such anthropogenic perturbations as unsustainable yield from the regional aquifer and adverse impacts from aquifer storage and recovery (ASR) activities in the SCP.  相似文献   
88.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   
89.
Buying Time: Real and Hypothetical Offers   总被引:3,自引:0,他引:3  
This article provides the results of a field test of contingent valuation estimates within a willingness to accept framework. Using dichotomous choice questions in telephone–mail–telephone interviews, we compare survey respondents' responses to real and hypothetical offers for the opportunity to spend time in a second set of interviews on an undisclosed topic. Five hundred and forty people were randomly split between the real and hypothetical treatments. Our findings indicate no significant differences between people's choices with real and hypothetical offers. Choice models werenotsignificantly different between real and hypothetical offers.  相似文献   
90.
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose substantially during the field test, where no pH control was implemented. The results suggest that pretreatment with an SMZ/MBR system can provide substantial removal of organic compounds present in produced water, a necessary first step for many water-reuse applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号